Martin H, Touzet P, Van Rossum F, Delalande D, Arnaud J-F
Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, Villeneuve d'Ascq, France.
Meise Botanic Garden (formerly National Botanic Garden of Belgium), Meise, Belgium.
Heredity (Edinb). 2016 Mar;116(3):286-94. doi: 10.1038/hdy.2015.100. Epub 2015 Dec 9.
As a result of recent or past evolutionary processes, a single species might consist of distinct Evolutionary Significant Units (ESUs), even corresponding to cryptic species. Determining the underlying mechanisms of range shifts and the processes at work in the build-up of divergent ESUs requires elucidating the factors that contribute to population genetic divergence across a species' range. We investigated the large-scale patterns of genetic structure in the perennial herbaceous plant species Silene nutans (Caryophyllaceae) in Western Europe. We sampled and genotyped 111 populations using 13 nuclear microsatellite loci and 6 plastid single-nucleotide polymorphisms. Broad-scale spatial population genetic structure was examined using Bayesian clustering, spatial multivariate analyses and measures of hierarchical genetic differentiation. The genotypic structure of S. nutans was typical of a predominantly allogamous mating system. We also identified plastid lineages with no intra-population polymorphism, mirroring two genetically differentiated nuclear lineages. No evidence of admixture was found. Spatial trends in genetic diversity further suggested independent leading-edge expansion associated with founding events and subsequent genetic erosion. Overall, our findings suggested speciation processes in S. nutans and highlighted striking patterns of distinct stepwise recolonisation of Western Europe shaped by Quaternary climate oscillations. Two main potential ESUs can be defined in Western Europe, corresponding to Eastern and Western nuclear-plastid lineages. In situ preservation of populations and genetic rescue implying ex situ conservation techniques should take the lineage identity into account. This is particularly true in Great Britain, northern France and Belgium, where S. nutans is rare and where distinct lineages co-occur in close contact.
由于近期或过去的进化过程,一个单一物种可能由不同的进化显著单元(ESU)组成,甚至对应于隐存种。确定范围转移的潜在机制以及不同ESU形成过程中起作用的过程,需要阐明导致物种分布范围内种群遗传分化的因素。我们研究了西欧多年生草本植物女娄菜(石竹科)的大规模遗传结构模式。我们使用13个核微卫星位点和6个质体单核苷酸多态性对111个种群进行了采样和基因分型。使用贝叶斯聚类、空间多变量分析和层次遗传分化测量方法研究了广泛的空间种群遗传结构。女娄菜S. nutans的基因型结构是典型的异交为主的交配系统。我们还鉴定出没有种群内多态性的质体谱系,这反映了两个遗传分化的核谱系。未发现混合的证据。遗传多样性的空间趋势进一步表明与奠基事件和随后的遗传侵蚀相关的独立前沿扩张。总体而言,我们的研究结果表明女娄菜S. nutans存在物种形成过程,并突出了由第四纪气候振荡塑造的西欧独特的逐步重新定殖的显著模式。在西欧可以定义两个主要的潜在ESU,分别对应于东部和西部的核质体谱系。原地保护种群和涉及迁地保护技术的遗传拯救应考虑谱系身份。在英国、法国北部和比利时尤其如此,那里女娄菜S. nutans很罕见,不同谱系紧密共存。