Suppr超能文献

估计分层F统计量。

ESTIMATING HIERARCHICAL F-STATISTICS.

作者信息

Yang Rong-Cai

机构信息

Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.

出版信息

Evolution. 1998 Aug;52(4):950-956. doi: 10.1111/j.1558-5646.1998.tb01824.x.

Abstract

This paper presents an analysis of variance (ANOVA) approach by which estimation of F-statistics can be made from data with an arbitrary s-level hierarchical population structure. Assuming a complete random-effect model, a general ANOVA procedure is developed to estimate F-statistics as ratios of different variance components for all levels of population subdivision in the hierarchy. A generalized relationship among F-statistics is also derived to extend the well-known relationship originally found by Sewall Wright. Although not entirely free from the bias particular to small number of subdivisions at each hierarchy and extreme gene frequencies, the ANOVA estimators of F-statistics consider sampling effects at each level of hierarchy, thus removing the bias incurred in the other estimators that are commonly based on direct substitution of unknown gene frequencies by their sample estimates. Therefore, the ANOVA estimation procedure presented here may become increasingly useful in analyzing complex population structure because of increasing use of the estimated hierarchical F-statistics to infer genetic and demographic structures of natural populations within and among species.

摘要

本文提出了一种方差分析(ANOVA)方法,通过该方法可以从具有任意s级层次总体结构的数据中估计F统计量。假设采用完全随机效应模型,开发了一种通用的方差分析程序,以将F统计量估计为层次结构中所有总体细分水平的不同方差分量之比。还推导了F统计量之间的广义关系,以扩展最初由休厄尔·赖特发现的著名关系。尽管不能完全消除每个层次结构中细分数量少和基因频率极端所特有的偏差,但F统计量的方差分析估计量考虑了每个层次结构水平的抽样效应,从而消除了其他通常基于用样本估计值直接替代未知基因频率的估计量所产生的偏差。因此,由于越来越多地使用估计的层次F统计量来推断物种内部和物种之间自然种群的遗传和种群结构,本文提出的方差分析估计程序在分析复杂的种群结构时可能会变得越来越有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验