Suppr超能文献

由片上微磁体驱动的超顺磁珠的动态轨迹分析

Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets.

作者信息

Hu Xinghao, Abedini-Nassab Roozbeh, Lim Byeonghwa, Yang Ye, Howdyshell Marci, Sooryakumar Ratnasingham, Yellen Benjamin B, Kim CheolGi

机构信息

Department of Emerging Materials Science, DGIST , Daegu 711-873, South Korea.

Department of Mechanical Engineering and Materials Science, Duke University , Box 90300 Hudson Hall, Durham, North Carolina 27708, USA.

出版信息

J Appl Phys. 2015 Nov 28;118(20):203904. doi: 10.1063/1.4936219. Epub 2015 Nov 24.

Abstract

We investigate the non-linear dynamics of superparamagnetic beads moving around the periphery of patterned magnetic disks in the presence of an in-plane rotating magnetic field. Three different dynamical regimes are observed in experiments, including (1) phase-locked motion at low driving frequencies, (2) phase-slipping motion above the first critical frequency f, and (3) phase-insulated motion above the second critical frequency f. Experiments with Janus particles were used to confirm that the beads move by sliding rather than rolling. The rest of the experiments were conducted on spherical, isotropic magnetic beads, in which automated particle position tracking algorithms were used to analyze the bead dynamics. Experimental results in the phase-locked and phase-slipping regimes correlate well with numerical simulations. Additional assumptions are required to predict the onset of the phase-insulated regime, in which the beads are trapped in closed orbits; however, the origin of the phase-insulated state appears to result from local magnetization defects. These results indicate that these three dynamical states are universal properties of bead motion in non-uniform oscillators.

摘要

我们研究了在平面内旋转磁场存在的情况下,超顺磁性珠子围绕图案化磁盘周边运动的非线性动力学。在实验中观察到三种不同的动力学状态,包括:(1)低驱动频率下的锁相运动;(2)高于第一临界频率f时的相位滑移运动;(3)高于第二临界频率f时的相位绝缘运动。使用双面粒子进行的实验证实珠子是通过滑动而不是滚动来移动的。其余实验是在球形各向同性磁珠上进行的,其中使用自动粒子位置跟踪算法来分析珠子的动力学。锁相和相位滑移状态下的实验结果与数值模拟结果高度相关。预测珠子被困在封闭轨道中的相位绝缘状态的起始需要额外的假设;然而,相位绝缘状态的起源似乎是由局部磁化缺陷导致的。这些结果表明,这三种动力学状态是非均匀振荡器中珠子运动的普遍特性。

相似文献

1
Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets.
J Appl Phys. 2015 Nov 28;118(20):203904. doi: 10.1063/1.4936219. Epub 2015 Nov 24.
2
The synchronization of superparamagnetic beads driven by a micro-magnetic ratchet.
Lab Chip. 2010 Aug 21;10(16):2108-14. doi: 10.1039/c003836a. Epub 2010 Jun 17.
3
Multiplexing superparamagnetic beads driven by multi-frequency ratchets.
Lab Chip. 2011 Dec 21;11(24):4214-20. doi: 10.1039/c1lc20683d. Epub 2011 Oct 28.
4
Nonlinear dynamics of superparamagnetic beads in a traveling magnetic-field wave.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011402. doi: 10.1103/PhysRevE.80.011402. Epub 2009 Jul 6.
5
Transport of superparamagnetic beads through a two-dimensional potential energy landscape.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011403. doi: 10.1103/PhysRevE.84.011403. Epub 2011 Jul 26.
6
Traveling wave magnetophoresis for high resolution chip based separations.
Lab Chip. 2007 Dec;7(12):1681-8. doi: 10.1039/b713547e. Epub 2007 Oct 17.
7
Dynamics of a paramagnetic colloidal particle driven on a magnetic-bubble lattice.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):060401. doi: 10.1103/PhysRevE.77.060401. Epub 2008 Jun 9.
8
Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields.
Lab Chip. 2007 Dec;7(12):1746-51. doi: 10.1039/b713735b. Epub 2007 Sep 28.

引用本文的文献

1
Magnetophoretic Micro-Distributor for Controlled Clustering of Cells.
Adv Sci (Weinh). 2022 Feb;9(6):e2103579. doi: 10.1002/advs.202103579. Epub 2021 Dec 15.
2
Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review.
Micromachines (Basel). 2021 Jun 29;12(7):768. doi: 10.3390/mi12070768.

本文引用的文献

1
Magnetophoretic circuits for digital control of single particles and cells.
Nat Commun. 2014 May 14;5:3846. doi: 10.1038/ncomms4846.
2
Particle manipulation based on optically controlled free surface hydrodynamics.
Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7291-5. doi: 10.1002/anie.201302111. Epub 2013 May 31.
3
On-chip magnetic separation and encapsulation of cells in droplets.
Lab Chip. 2013 Mar 21;13(6):1172-81. doi: 10.1039/c2lc41201b.
4
Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.
Biomed Microdevices. 2012 Dec;14(6):1077-84. doi: 10.1007/s10544-012-9703-2.
5
Transport of superparamagnetic beads through a two-dimensional potential energy landscape.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011403. doi: 10.1103/PhysRevE.84.011403. Epub 2011 Jul 26.
6
Translocation of bio-functionalized magnetic beads using smart magnetophoresis.
Biosens Bioelectron. 2010 Dec 15;26(4):1755-8. doi: 10.1016/j.bios.2010.08.033. Epub 2010 Aug 19.
7
On-chip manipulation of protein-coated magnetic beads via domain-wall conduits.
Adv Mater. 2010 Jun 25;22(24):2706-10. doi: 10.1002/adma.201000146.
8
The synchronization of superparamagnetic beads driven by a micro-magnetic ratchet.
Lab Chip. 2010 Aug 21;10(16):2108-14. doi: 10.1039/c003836a. Epub 2010 Jun 17.
9
Multidimensional optical fractionation of colloidal particles with holographic verification.
Phys Rev Lett. 2010 Jan 15;104(2):028302. doi: 10.1103/PhysRevLett.104.028302.
10
Dynamical regimes of a paramagnetic particle circulating a magnetic bubble domain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):052401. doi: 10.1103/PhysRevE.80.052401. Epub 2009 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验