Suppr超能文献

伤口愈合过程中地形微环境对细胞生长和细胞间相互作用影响的芯片检测

On-chip assay of the effect of topographical microenvironment on cell growth and cell-cell interactions during wound healing.

作者信息

An Yanfei, Ma Chao, Tian Chang, Zhao Lei, Pang Long, Tu Qin, Xu Juan, Wang Jinyi

机构信息

Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China.

出版信息

Biomicrofluidics. 2015 Dec 4;9(6):064112. doi: 10.1063/1.4936927. eCollection 2015 Nov.

Abstract

Wound healing is an essential physiological process for tissue homeostasis, involving multiple types of cells, extracellular matrices, and growth factor/chemokine interactions. Many in vitro studies have investigated the interactions between cues mentioned above; however, most of them only focused on a single factor. In the present study, we design a wound healing device to recapitulate in vivo complex microenvironments and heterogeneous cell situations to investigate how three types of physiologically related cells interact with their microenvironments around and with each other during a wound healing process. Briefly, a microfluidic device with a micropillar substrate, where diameter and interspacing can be tuned to mimic the topographical features of the 3D extracellular matrix, was designed to perform positional cell loading on the micropillar substrate, co-culture of three types of physiologically related cells, keratinocytes, dermal fibroblasts, and human umbilical vein endothelial cells, as well as an investigation of their interactions during wound healing. The result showed that cell attachment, morphology, cytoskeleton distribution, and nucleus shape were strongly affected by the micropillars, and these cells showed collaborative response to heal the wound. Taken together, these findings highlight the dynamic relationship between cells and their microenvironments. Also, this reproducible device may facilitate the in vitro investigation of numerous physiological and pathological processes such as cancer metastasis, angiogenesis, and tissue engineering.

摘要

伤口愈合是组织稳态的一个重要生理过程,涉及多种类型的细胞、细胞外基质以及生长因子/趋化因子的相互作用。许多体外研究已经探究了上述因素之间的相互作用;然而,其中大多数研究仅聚焦于单一因素。在本研究中,我们设计了一种伤口愈合装置,以重现体内复杂的微环境和异质性细胞情况,从而研究在伤口愈合过程中三种生理相关细胞如何与其周围的微环境相互作用以及它们彼此之间如何相互作用。简要地说,设计了一种带有微柱基底的微流控装置,其直径和间距可以调节以模拟三维细胞外基质的地形特征,该装置用于在微柱基底上进行定位细胞加载、三种生理相关细胞(角质形成细胞、真皮成纤维细胞和人脐静脉内皮细胞)的共培养,以及对它们在伤口愈合过程中相互作用的研究。结果表明,微柱对细胞附着、形态、细胞骨架分布和细胞核形状有强烈影响,并且这些细胞表现出协同反应来愈合伤口。综上所述,这些发现突出了细胞与其微环境之间的动态关系。此外,这种可重复的装置可能有助于体外研究众多生理和病理过程,如癌症转移、血管生成和组织工程。

相似文献

1
On-chip assay of the effect of topographical microenvironment on cell growth and cell-cell interactions during wound healing.
Biomicrofluidics. 2015 Dec 4;9(6):064112. doi: 10.1063/1.4936927. eCollection 2015 Nov.
2
Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing.
Acta Biomater. 2017 May;54:333-344. doi: 10.1016/j.actbio.2017.03.035. Epub 2017 Mar 27.
3
Investigation of wound healing process guided by nano-scale topographic patterns integrated within a microfluidic system.
PLoS One. 2018 Jul 26;13(7):e0201418. doi: 10.1371/journal.pone.0201418. eCollection 2018.
4
Fabrication of microfluidic system for the assessment of cell migration on 3D micropatterned substrates.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6034-7. doi: 10.1109/IEMBS.2009.5333169.
6
Chemokine ligand-receptor interactions critically regulate cutaneous wound healing.
Eur J Med Res. 2018 Jan 16;23(1):4. doi: 10.1186/s40001-017-0299-0.
7
Simulating Inflammation in a Wound Microenvironment Using a Dermal Wound-on-a-Chip Model.
Adv Healthc Mater. 2019 Jan;8(1):e1801307. doi: 10.1002/adhm.201801307. Epub 2018 Dec 4.
8
9
Fibroblast response to hypoxia: the relationship between angiogenesis and matrix regulation.
J Surg Res. 1999 Jun 15;84(2):127-33. doi: 10.1006/jsre.1999.5627.
10
Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing.
Cytotherapy. 2015 Mar;17(3):293-300. doi: 10.1016/j.jcyt.2014.10.005. Epub 2014 Nov 21.

引用本文的文献

1
Potential of CO-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale.
Mater Today Bio. 2021 Nov 22;12:100163. doi: 10.1016/j.mtbio.2021.100163. eCollection 2021 Sep.
2
Bioengineered Platforms for Chronic Wound Infection Studies: How Can We Make Them More Human-Relevant?
Front Bioeng Biotechnol. 2019 Dec 13;7:418. doi: 10.3389/fbioe.2019.00418. eCollection 2019.

本文引用的文献

1
Real-time motion analysis reveals cell directionality as an indicator of breast cancer progression.
PLoS One. 2013;8(3):e58859. doi: 10.1371/journal.pone.0058859. Epub 2013 Mar 19.
3
Cyclic strain dominates over microtopography in regulating cytoskeletal and focal adhesion remodeling of human mesenchymal stem cells.
Biochem Biophys Res Commun. 2013 Jan 18;430(3):1040-6. doi: 10.1016/j.bbrc.2012.11.120. Epub 2012 Dec 17.
4
Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts.
PLoS One. 2012;7(7):e40951. doi: 10.1371/journal.pone.0040951. Epub 2012 Jul 20.
5
Proliferation of epithelial cells on PDMS substrates with micropillars fabricated with different curvature characteristics.
Biointerphases. 2012 Dec;7(1-4):21. doi: 10.1007/s13758-012-0021-2. Epub 2012 Feb 17.
7
Endothelial cell responses to micropillar substrates of varying dimensions and stiffness.
J Biomed Mater Res A. 2012 Jun;100(6):1457-66. doi: 10.1002/jbm.a.34059. Epub 2012 Mar 3.
8
Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.
Lab Chip. 2012 Feb 7;12(3):640-6. doi: 10.1039/c1lc20879a. Epub 2011 Dec 6.
9
Control of cell nucleus shapes via micropillar patterns.
Biomaterials. 2012 Feb;33(6):1730-5. doi: 10.1016/j.biomaterials.2011.11.023. Epub 2011 Nov 30.
10
Characteristics of motility-based filtering of adherent cells on microgrooved surfaces.
Biomaterials. 2012 Jan;33(2):395-401. doi: 10.1016/j.biomaterials.2011.09.094. Epub 2011 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验