Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
J Biomed Mater Res A. 2012 Jun;100(6):1457-66. doi: 10.1002/jbm.a.34059. Epub 2012 Mar 3.
In the vascular niche, the extracellular matrix (ECM) provides a structural scaffold with a rich ligand landscape of essential matrix proteins that supports the organization and stabilization of endothelial cells (ECs) into functional blood vessels. Many of the physical interactions between ECs and macromolecular components of the ECM occur at both the micron and submicron scale. In addition, the elasticity of the ECM has been shown to be a critical factor in the progress of the angiogenic cascade. Here, we sought to determine the effect of substrate topography and elasticity (stiffness) on EC behavior. Utilizing a unique SiO(2) substrate with an array of micropillars, we first demonstrate that micropillars with heights >3 μm significantly decrease EC adhesion and spreading. Fibronectin (Fn) patterning of 1 μm high micropillars enabled EC adhesion onto the micropillars and promoted alignment in a single-cell chain manner. We then developed a robust method to generate a soft micropillar substrate array made of polydimethylsiloxane (PDMS), similar to the SiO(2) substrate. Finally, we examined the kinetics of EC adhesion and spreading on the soft PDMS substrates compared to the stiff SiO(2) substrates. Culturing cells on the PDMS substrates demonstrated an enhanced EC elongation and alignment when compared to stiff SiO(2) with similar topographical features. We conclude that the elongation and alignment of ECs is coregulated by substrate topography and stiffness and can be harnessed to guide vascular organization.
在血管壁龛中,细胞外基质(ECM)提供了一个结构支架,其中含有丰富的配体,包括基本的基质蛋白,这些蛋白支持内皮细胞(ECs)的组织和稳定,形成功能性血管。ECs 与 ECM 的大分子成分之间的许多物理相互作用都发生在微米和亚微米尺度上。此外,ECM 的弹性已被证明是血管生成级联反应进展的关键因素。在这里,我们试图确定基底形貌和弹性(硬度)对 EC 行为的影响。我们利用具有微柱阵列的独特 SiO2 基底,首先证明高度>3μm 的微柱显著降低了 EC 的黏附和铺展。1μm 高微柱上的纤维连接蛋白(Fn)图案化使 EC 能够黏附在微柱上,并以单细胞链的方式促进排列。然后,我们开发了一种生成软微柱基底阵列的稳健方法,该阵列由聚二甲基硅氧烷(PDMS)制成,类似于 SiO2 基底。最后,我们研究了 EC 在软 PDMS 基底上与硬 SiO2 基底相比的黏附和铺展动力学。与具有相似形貌特征的硬 SiO2 相比,在 PDMS 基底上培养细胞显示出 EC 的伸长和排列增强。我们的结论是,EC 的伸长和排列受到基底形貌和刚度的共同调节,并且可以用来指导血管组织。