Suppr超能文献

磁流体动力学湍流中的反常标度:运动学近似下各向异性和可压缩性的影响

Anomalous scaling in magnetohydrodynamic turbulence: Effects of anisotropy and compressibility in the kinematic approximation.

作者信息

Antonov N V, Kostenko M M

机构信息

Chair of High Energy Physics and Elementary Particles, Department of Theoretical Physics, Faculty of Physics, Saint Petersburg State University, Ulyanovskaja 1, Saint Petersburg-Petrodvorez, 198904 Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):053013. doi: 10.1103/PhysRevE.92.053013. Epub 2015 Nov 16.

Abstract

The field-theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝ δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant.

摘要

场论重整化群和算符乘积展开被应用于由随机湍流速度场平流的无源矢量(磁场)场模型。后者由可压缩流体的纳维 - 斯托克斯方程支配,受到协方差正比于δ(t - t')k(4 - d - y)的外部随机力作用,其中d是空间维度,y是任意指数。从物理观点来看,该模型描述了所谓运动学近似下的磁流体动力学湍流,其中磁场对流体动力学的影响被忽略。原始的随机问题被重新表述为一个可乘性重整化的场论模型;相应的重整化群方程具有一个红外吸引不动点。结果表明,对于较小的y值,磁场的各种关联函数及其幂次在惯性 - 对流范围内已经表现出反常标度行为。与某些复合场(量子场术语中的“算符”)的标度(临界)维度相关的相应反常指数,可以作为y的级数系统地计算出来。实际计算是在前述单圈近似下进行的,包括各向异性贡献中的指数。应当强调的是,与具有有限关联时间的高斯系综不同,这里给出的模型和微扰理论明显具有伽利略协变性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验