Suppr超能文献

磁流体动力学湍流中的反常标度和大尺度各向异性:Kazantsev-Kraichnan运动学模型的双圈重整化群分析

Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: two-loop renormalization-group analysis of the Kazantsev-Kraichnan kinematic model.

作者信息

Antonov N V, Gulitskiy N M

机构信息

Department of Theoretical Physics, St Petersburg University, Uljanovskaja 1, St Petersburg-Petrodvorez, 198904 Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):065301. doi: 10.1103/PhysRevE.85.065301. Epub 2012 Jun 1.

Abstract

The field theoretic renormalization group and operator product expansion are applied to the Kazantsev-Kraichnan kinematic model for the magnetohydrodynamic turbulence. The anomalous scaling emerges as a consequence of the existence of certain composite fields ("operators") with negative dimensions. The anomalous exponents for the correlation functions of arbitrary order are calculated in the two-loop approximation (second order of the renormalization-group expansion), including the anisotropic sectors. The anomalous scaling and the hierarchy of anisotropic contributions become stronger due to those second-order contributions.

摘要

场论重整化群和算符乘积展开被应用于磁流体动力学湍流的卡赞采夫 - 克莱奇南运动学模型。反常标度作为具有负维度的某些复合场(“算符”)存在的结果而出现。在双圈近似(重整化群展开的二阶)下计算了任意阶关联函数的反常指数,包括各向异性扇区。由于那些二阶贡献,反常标度和各向异性贡献的层次变得更强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验