Antonov N V, Gulitskiy N M
Department of Theoretical Physics, St Petersburg University, Uljanovskaja 1, St Petersburg-Petrodvorez, 198904 Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):065301. doi: 10.1103/PhysRevE.85.065301. Epub 2012 Jun 1.
The field theoretic renormalization group and operator product expansion are applied to the Kazantsev-Kraichnan kinematic model for the magnetohydrodynamic turbulence. The anomalous scaling emerges as a consequence of the existence of certain composite fields ("operators") with negative dimensions. The anomalous exponents for the correlation functions of arbitrary order are calculated in the two-loop approximation (second order of the renormalization-group expansion), including the anisotropic sectors. The anomalous scaling and the hierarchy of anisotropic contributions become stronger due to those second-order contributions.
场论重整化群和算符乘积展开被应用于磁流体动力学湍流的卡赞采夫 - 克莱奇南运动学模型。反常标度作为具有负维度的某些复合场(“算符”)存在的结果而出现。在双圈近似(重整化群展开的二阶)下计算了任意阶关联函数的反常指数,包括各向异性扇区。由于那些二阶贡献,反常标度和各向异性贡献的层次变得更强。