Suppr超能文献

从运动前脑电图相关性检测中风患者的行走意图。

Detecting intention to walk in stroke patients from pre-movement EEG correlates.

作者信息

Sburlea Andreea Ioana, Montesano Luis, Cano de la Cuerda Roberto, Alguacil Diego Isabel Maria, Miangolarra-Page Juan Carlos, Minguez Javier

机构信息

Bit & Brain Technologies S.L., Calle Maria de Luna 11, nave 4, Zaragoza, 50018, Spain.

University of Zaragoza, Institute of Investigation in Engineering of Aragon (I3A), Building I+D+i, Mariano Esquillor, Zaragoza, 50018, Spain.

出版信息

J Neuroeng Rehabil. 2015 Dec 12;12:113. doi: 10.1186/s12984-015-0087-4.

Abstract

BACKGROUND

Most studies in the field of brain-computer interfacing (BCI) for lower limbs rehabilitation are carried out with healthy subjects, even though insights gained from healthy populations may not generalize to patients in need of a BCI.

METHODS

We investigate the ability of a BCI to detect the intention to walk in stroke patients from pre-movement EEG correlates. Moreover, we also investigated how the motivation of the patients to execute a task related to the rehabilitation therapy affects the BCI accuracy. Nine chronic stroke patients performed a self-initiated walking task during three sessions, with an intersession interval of one week.

RESULTS

Using a decoder that combines temporal and spectral sparse classifiers we detected pre-movement state with an accuracy of 64 % in a range between 18 % and 85.2 %, with the chance level at 4 %. Furthermore, we found a significantly strong positive correlation (r = 0.561, p = 0.048) between the motivation of the patients to perform the rehabilitation related task and the accuracy of the BCI detector of their intention to walk.

CONCLUSIONS

We show that a detector based on temporal and spectral features can be used to classify pre-movement state in stroke patients. Additionally, we found that patients' motivation to perform the task showed a strong correlation to the attained detection rate of their walking intention.

摘要

背景

尽管从健康人群中获得的见解可能无法推广到需要脑机接口的患者,但大多数用于下肢康复的脑机接口(BCI)领域的研究都是在健康受试者身上进行的。

方法

我们研究了一种BCI从运动前脑电图相关性中检测中风患者行走意图的能力。此外,我们还研究了患者执行与康复治疗相关任务的动机如何影响BCI的准确性。九名慢性中风患者在三个阶段中执行了一项自主行走任务,阶段间隔为一周。

结果

使用一种结合了时间和频谱稀疏分类器的解码器,我们在18%至85.2%的范围内以64%的准确率检测到运动前状态,机遇水平为4%。此外,我们发现患者执行康复相关任务的动机与BCI检测其行走意图的准确性之间存在显著的强正相关(r = 0.561,p = 0.048)。

结论

我们表明,基于时间和频谱特征的检测器可用于对中风患者的运动前状态进行分类。此外,我们发现患者执行任务的动机与他们行走意图的检测率有很强的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ac/4676850/b4aaea6fd092/12984_2015_87_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验