Suppr超能文献

肌电图(EMG)是否可以替代脑机接口(BCI)来检测重度中风患者的运动意图?

Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke?

出版信息

IEEE Trans Biomed Eng. 2018 Dec;65(12):2790-2797. doi: 10.1109/TBME.2018.2817688. Epub 2018 Mar 21.

Abstract

OBJECTIVE

In light of the shortcomings of current restorative brain-computer interfaces (BCI), this study investigated the possibility of using EMG to detect hand/wrist extension movement intention to trigger robot-assisted training in individuals without residual movements.

METHODS

We compared movement intention detection using an EMG detector with a sensorimotor rhythm based EEG-BCI using only ipsilesional activity. This was carried out on data of 30 severely affected chronic stroke patients from a randomized control trial using an EEG-BCI for robot-assisted training.

RESULTS

The results indicate the feasibility of using EMG to detect movement intention in this severely handicapped population; probability of detecting EMG when patients attempted to move was higher (p 0.001) than at rest. Interestingly, 22 out of 30 (or 73%) patients had sufficiently strong EMG in their finger/wrist extensors. Furthermore, in patients with detectable EMG, there was poor agreement between the EEG and EMG intent detectors, which indicates that these modalities may detect different processes.

CONCLUSION

A substantial segment of severely affected stroke patients may benefit from EMG-based assisted therapy. When compared to EEG, a surface EMG interface requires less preparation time, which is easier to don/doff, and is more compact in size.

SIGNIFICANCE

This study shows that a large proportion of severely affected stroke patients have residual EMG, which yields a direct and practical way to trigger robot-assisted training.

摘要

目的

鉴于当前恢复性脑机接口 (BCI) 的缺陷,本研究探讨了利用肌电图 (EMG) 检测手部/腕部伸展运动意图以触发无残留运动个体的机器人辅助训练的可能性。

方法

我们比较了使用 EMG 探测器和仅使用同侧活动的基于感觉运动节律的 EEG-BCI 进行运动意图检测的效果。这是在一项使用 EEG-BCI 进行机器人辅助训练的随机对照试验中对 30 名严重影响的慢性中风患者的数据进行的。

结果

结果表明,在这种严重残疾人群中使用 EMG 检测运动意图是可行的;当患者试图移动时,检测到 EMG 的概率更高(p<0.001),而在休息时则较低。有趣的是,30 名患者中有 22 名(或 73%)的手指/腕部伸肌具有足够强的 EMG。此外,在可检测到 EMG 的患者中,EEG 和 EMG 意图探测器之间的一致性较差,这表明这些模态可能检测到不同的过程。

结论

相当一部分严重影响的中风患者可能受益于基于 EMG 的辅助治疗。与 EEG 相比,表面 EMG 接口需要的准备时间更短,更容易穿戴,并且体积更小。

意义

本研究表明,很大一部分严重影响的中风患者仍有残留的 EMG,这为触发机器人辅助训练提供了一种直接实用的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验