Sugihara Kei, Nishiyama Koichi, Fukuhara Shigetomo, Uemura Akiyoshi, Arima Satoshi, Kobayashi Ryo, Köhn-Luque Alvaro, Mochizuki Naoki, Suda Toshio, Ogawa Hisao, Kurihara Hiroki
Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan.
Cell Rep. 2015 Dec 1;13(9):1814-27. doi: 10.1016/j.celrep.2015.10.051. Epub 2015 Nov 19.
Angiogenesis is a multicellular phenomenon driven by morphogenetic cell movements. We recently reported morphogenetic vascular endothelial cell (EC) behaviors to be dynamic and complex. However, the principal mechanisms orchestrating individual EC movements in angiogenic morphogenesis remain largely unknown. Here we present an experiment-driven mathematical model that enables us to systematically dissect cellular mechanisms in branch elongation. We found that cell-autonomous and coordinated actions governed these multicellular behaviors, and a cell-autonomous process sufficiently illustrated essential features of the morphogenetic EC dynamics at both the single-cell and cell-population levels. Through refining our model and experimental verification, we further identified a coordinated mode of tip EC behaviors regulated via a spatial relationship between tip and follower ECs, which facilitates the forward motility of tip ECs. These findings provide insights that enhance our mechanistic understanding of not only angiogenic morphogenesis, but also other types of multicellular phenomenon.
血管生成是一种由形态发生细胞运动驱动的多细胞现象。我们最近报道,形态发生性血管内皮细胞(EC)的行为是动态且复杂的。然而,在血管生成形态发生过程中协调单个EC运动的主要机制在很大程度上仍然未知。在此,我们提出了一个由实验驱动的数学模型,该模型使我们能够系统地剖析分支伸长中的细胞机制。我们发现,细胞自主和协调作用支配着这些多细胞行为,并且一个细胞自主过程足以在单细胞和细胞群体水平上阐释形态发生性EC动态的基本特征。通过完善我们的模型并进行实验验证,我们进一步确定了一种通过尖端EC与跟随EC之间的空间关系来调节尖端EC行为的协调模式,这促进了尖端EC的向前运动。这些发现不仅为我们增进对血管生成形态发生的机制理解提供了见解,也为其他类型的多细胞现象提供了见解。