Suppr超能文献

黏附和各向异性的血管内皮细胞运动驱动血管生成形态发生。

Cohesive and anisotropic vascular endothelial cell motility driving angiogenic morphogenesis.

机构信息

Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.

出版信息

Sci Rep. 2019 Jun 26;9(1):9304. doi: 10.1038/s41598-019-45666-2.

Abstract

Vascular endothelial cells (ECs) in angiogenesis exhibit inhomogeneous collective migration called "cell mixing", in which cells change their relative positions by overtaking each other. However, how such complex EC dynamics lead to the formation of highly ordered branching structures remains largely unknown. To uncover hidden laws of integration driving angiogenic morphogenesis, we analyzed EC behaviors in an in vitro angiogenic sprouting assay using mouse aortic explants in combination with mathematical modeling. Time-lapse imaging of sprouts extended from EC sheets around tissue explants showed directional cohesive EC movements with frequent U-turns, which often coupled with tip cell overtaking. Imaging of isolated branches deprived of basal cell sheets revealed a requirement of a constant supply of immigrating cells for ECs to branch forward. Anisotropic attractive forces between neighboring cells passing each other were likely to underlie these EC motility patterns, as evidenced by an experimentally validated mathematical model. These results suggest that cohesive movements with anisotropic cell-to-cell interactions characterize the EC motility, which may drive branch elongation depending on a constant cell supply. The present findings provide novel insights into a cell motility-based understanding of angiogenic morphogenesis.

摘要

血管内皮细胞(ECs)在血管生成中表现出不均匀的集体迁移,称为“细胞混合”,其中细胞通过超越彼此来改变它们的相对位置。然而,如此复杂的 EC 动力学如何导致高度有序的分支结构的形成仍然很大程度上未知。为了揭示驱动血管生成形态发生的隐藏整合规律,我们使用小鼠主动脉外植体分析了体外血管生成发芽测定中的 EC 行为,结合数学建模。从组织外植体周围的 EC 片层延伸的芽的延时成像显示具有频繁 U 形转弯的定向有凝聚力的 EC 运动,这通常与尖端细胞超越有关。对脱离基底细胞片的分离分支的成像显示,EC 向前分支需要不断供应移民细胞。相邻细胞之间的各向异性吸引力可能是这些 EC 运动模式的基础,这一点得到了经过实验验证的数学模型的证明。这些结果表明,具有各向异性细胞间相互作用的有凝聚力的运动特征描述了 EC 运动,这可能取决于细胞的持续供应,从而推动分支伸长。这些发现为基于细胞运动的血管生成形态发生提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6974/6594931/726a5ddf383e/41598_2019_45666_Fig1_HTML.jpg

相似文献

1
Cohesive and anisotropic vascular endothelial cell motility driving angiogenic morphogenesis.
Sci Rep. 2019 Jun 26;9(1):9304. doi: 10.1038/s41598-019-45666-2.
2
Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement.
Development. 2011 Nov;138(21):4763-76. doi: 10.1242/dev.068023. Epub 2011 Sep 28.
3
Autonomy and Non-autonomy of Angiogenic Cell Movements Revealed by Experiment-Driven Mathematical Modeling.
Cell Rep. 2015 Dec 1;13(9):1814-27. doi: 10.1016/j.celrep.2015.10.051. Epub 2015 Nov 19.
4
Coordinated linear and rotational movements of endothelial cells compartmentalized by VE-cadherin drive angiogenic sprouting.
iScience. 2023 Jun 7;26(7):107051. doi: 10.1016/j.isci.2023.107051. eCollection 2023 Jul 21.
5
Local cortical tension by myosin II guides 3D endothelial cell branching.
Curr Biol. 2009 Feb 10;19(3):260-5. doi: 10.1016/j.cub.2008.12.045. Epub 2009 Jan 29.
7
Cdc42 regulates branching in angiogenic sprouting in vitro.
Microcirculation. 2017 Jul;24(5). doi: 10.1111/micc.12372.
8
Overexpression of Annexin A2 Receptor Inhibits Neovascularization via the Promotion of Krüppel-Like Transcription Factor 2.
Cell Physiol Biochem. 2018;46(4):1617-1627. doi: 10.1159/000489209. Epub 2018 Apr 24.
9
Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis.
PLoS One. 2016 Nov 15;11(11):e0166489. doi: 10.1371/journal.pone.0166489. eCollection 2016.
10
Extrinsic Notch ligand Delta-like 1 regulates tip cell selection and vascular branching morphogenesis.
Circ Res. 2012 Feb 17;110(4):530-5. doi: 10.1161/CIRCRESAHA.111.263319. Epub 2012 Jan 26.

引用本文的文献

3
A three-dimensional model with two-body interactions for endothelial cells in angiogenesis.
Sci Rep. 2023 Nov 23;13(1):20549. doi: 10.1038/s41598-023-47911-1.
4
Metabolic regulation of endothelial senescence.
Front Cardiovasc Med. 2023 Aug 15;10:1232681. doi: 10.3389/fcvm.2023.1232681. eCollection 2023.
5
Coordinated linear and rotational movements of endothelial cells compartmentalized by VE-cadherin drive angiogenic sprouting.
iScience. 2023 Jun 7;26(7):107051. doi: 10.1016/j.isci.2023.107051. eCollection 2023 Jul 21.
6
Persistent homological cell tracking technology.
Sci Rep. 2023 Jul 5;13(1):10882. doi: 10.1038/s41598-023-37760-3.
7
Computational Model Exploring Characteristic Pattern Regulation in Periventricular Vessels.
Life (Basel). 2022 Dec 9;12(12):2069. doi: 10.3390/life12122069.
8
Mechanical regulation of the early stages of angiogenesis.
J R Soc Interface. 2022 Dec;19(197):20220360. doi: 10.1098/rsif.2022.0360. Epub 2022 Dec 7.

本文引用的文献

1
Microenvironmental regulation of tumour angiogenesis.
Nat Rev Cancer. 2017 Aug;17(8):457-474. doi: 10.1038/nrc.2017.51. Epub 2017 Jul 14.
3
Mechanisms and in vivo functions of contact inhibition of locomotion.
Nat Rev Mol Cell Biol. 2017 Jan;18(1):43-55. doi: 10.1038/nrm.2016.118. Epub 2016 Sep 28.
4
Glycolytic regulation of cell rearrangement in angiogenesis.
Nat Commun. 2016 Jul 20;7:12240. doi: 10.1038/ncomms12240.
5
The front and rear of collective cell migration.
Nat Rev Mol Cell Biol. 2016 Feb;17(2):97-109. doi: 10.1038/nrm.2015.14. Epub 2016 Jan 4.
6
Autonomy and Non-autonomy of Angiogenic Cell Movements Revealed by Experiment-Driven Mathematical Modeling.
Cell Rep. 2015 Dec 1;13(9):1814-27. doi: 10.1016/j.celrep.2015.10.051. Epub 2015 Nov 19.
7
8
Molecular basis of contact inhibition of locomotion.
Cell Mol Life Sci. 2016 Mar;73(6):1119-30. doi: 10.1007/s00018-015-2090-0. Epub 2015 Nov 19.
9
In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity.
J Cell Biol. 2014 Jul 7;206(1):113-27. doi: 10.1083/jcb.201402093.
10
The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis.
Nat Cell Biol. 2014 Apr;16(4):309-21. doi: 10.1038/ncb2926. Epub 2014 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验