Suppr超能文献

野外反射率和光照恢复。

Reflectance and Illumination Recovery in the Wild.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2016 Jan;38(1):129-41. doi: 10.1109/TPAMI.2015.2430318.

Abstract

The appearance of an object in an image encodes invaluable information about that object and the surrounding scene. Inferring object reflectance and scene illumination from an image would help us decode this information: reflectance can reveal important properties about the materials composing an object; the illumination can tell us, for instance, whether the scene is indoors or outdoors. Recovering reflectance and illumination from a single image in the real world, however, is a difficult task. Real scenes illuminate objects from every visible direction and real objects vary greatly in reflectance behavior. In addition, the image formation process introduces ambiguities, like color constancy, that make reversing the process ill-posed. To address this problem, we propose a Bayesian framework for joint reflectance and illumination inference in the real world. We develop a reflectance model and priors that precisely capture the space of real-world object reflectance and a flexible illumination model that can represent real-world illumination with priors that combat the deleterious effects of image formation. We analyze the performance of our approach on a set of synthetic data and demonstrate results on real-world scenes. These contributions enable reliable reflectance and illumination inference in the real world.

摘要

图像中物体的外观编码了有关该物体和周围场景的宝贵信息。从图像中推断物体的反射率和场景光照将有助于我们解码这些信息:反射率可以揭示组成物体的材料的重要属性;光照可以告诉我们,例如,场景是在室内还是室外。然而,从真实世界中的单个图像中恢复反射率和光照是一项艰巨的任务。真实场景从每个可见方向照亮物体,并且真实物体的反射率行为差异很大。此外,图像形成过程会引入像颜色恒常性这样的模糊性,使得反转过程不适定。为了解决这个问题,我们提出了一个用于在真实世界中联合反射率和光照推断的贝叶斯框架。我们开发了一个反射率模型和先验,它们可以精确地捕捉真实世界物体反射率的空间,以及一个灵活的光照模型,它可以用先验来表示真实世界的光照,这些先验可以对抗图像形成的有害影响。我们在一组合成数据上分析了我们方法的性能,并在真实场景上展示了结果。这些贡献实现了在真实世界中可靠的反射率和光照推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验