DeBlasio Stacy L, Chavez Juan D, Alexander Mariko M, Ramsey John, Eng Jimmy K, Mahoney Jaclyn, Gray Stewart M, Bruce James E, Cilia Michelle
Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA.
Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
J Virol. 2015 Dec 9;90(4):1973-87. doi: 10.1128/JVI.01706-15. Print 2016 Feb 15.
Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies.
The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.
证明感染过程中宿主与病毒蛋白之间的直接相互作用是病毒学领域的一个主要目标和挑战。大多数蛋白质相互作用并非二元的,也不容易进行结构测定。利用马铃薯卷叶病毒(PLRV)的感染性制剂和蛋白质相互作用报告分子(PIR),一种将可质谱裂解的化学交联剂与高分辨率质谱相结合的革命性技术,我们首次报道了一个宿主-病原体蛋白质相互作用网络,该网络包含了每个已鉴定的交联位点的数据衍生拓扑特征。我们表明,PLRV病毒粒子具有蛋白质相互作用热点和多功能表面拓扑结构,揭示了这些植物病毒如何最大限度地利用结合界面。在交联约束的指导下进行的建模数据表明,病毒粒子中主要衣壳蛋白的不对称堆积,这支持了先前的表位作图研究。蛋白质相互作用拓扑结构在黄症病毒科的其他物种以及疱疹病毒科和腺病毒科的无关病毒中是保守的。使用反向遗传学方法对三种与PLRV相互作用的宿主蛋白在植物中的功能分析揭示了宿主与病毒之间复杂的分子拔河。在我们模型预测的宿主和病毒结合界面内发现了结构模拟和多样化选择——宿主-病原体相互作用的标志。这些结果阐明了PLRV-宿主蛋白质相互作用网络的功能多样性,并证明了PIR技术在精确绘制功能性宿主-病原体蛋白质相互作用拓扑结构方面的有用性。
植物病毒的外部形状及其相互作用的宿主和昆虫载体蛋白决定了病毒是否会通过昆虫传播或感染特定宿主。获取这些信息很困难,需要多年的实验。我们使用蛋白质相互作用报告分子(PIR)技术来说明病毒在植物感染过程中如何利用宿主蛋白。PIR技术使我们的团队能够使用仅需几个小时的质谱分析精确描述功能性病毒-病毒、病毒-宿主和宿主-宿主蛋白质相互作用的位点。PIR技术在宿主-病原体相互作用中的应用将使研究顽固病原体(如宿主蛋白直接整合到感染因子中的动物病原体)的研究人员能够研究感染和传播过程中蛋白质如何相互作用,并开发新的阻断和治疗工具。