Schwartz Michael H, Pan Tao
Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA Committee on Microbiology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA.
Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA Committee on Microbiology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
Nucleic Acids Res. 2016 Jan 8;44(1):294-303. doi: 10.1093/nar/gkv1379. Epub 2015 Dec 10.
All organisms universally encode, synthesize and utilize proteins that function optimally within a subset of growth conditions. While healthy cells are thought to maintain high translational fidelity within their natural habitats, natural environments can easily fluctuate outside the optimal functional range of genetically encoded proteins. The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughout temperature variations ranging from 70 to 100°C, although the specific factors facilitating such adaptability are unknown. Here, we show that A. pernix undergoes constitutive leucine to methionine mistranslation at low growth temperatures. Low-temperature mistranslation is facilitated by the misacylation of tRNA(Leu) with methionine by the methionyl-tRNA synthetase (MetRS). At low growth temperatures, the A. pernix MetRS undergoes a temperature dependent shift in tRNA charging fidelity, allowing the enzyme to conditionally charge tRNA(Leu) with methionine. We demonstrate enhanced low-temperature activity for A. pernix citrate synthase that is synthesized during leucine to methionine mistranslation at low-temperature growth compared to its high-fidelity counterpart synthesized at high-temperature. Our results show that conditional leucine to methionine mistranslation can make protein adjustments capable of improving the low-temperature activity of hyperthermophilic proteins, likely by facilitating the increasing flexibility required for greater protein function at lower physiological temperatures.
所有生物普遍编码、合成并利用在特定生长条件子集内功能最佳的蛋白质。虽然健康细胞被认为在其自然栖息地内保持高翻译保真度,但自然环境很容易在基因编码蛋白质的最佳功能范围之外波动。嗜热古菌火球菌(Aeropyrum pernix,A. pernix)能够在70至100°C的温度变化范围内生长,尽管促进这种适应性的具体因素尚不清楚。在这里,我们表明,A. pernix在低温生长时会发生组成性的亮氨酸到甲硫氨酸的错义翻译。甲硫氨酰-tRNA合成酶(MetRS)将甲硫氨酸错误酰化到tRNA(Leu)上,促进了低温下的错义翻译。在低温生长时,A. pernix MetRS在tRNA电荷保真度上发生温度依赖性转变,使该酶能够有条件地用甲硫氨酸对tRNA(Leu)进行电荷化。我们证明,与在高温下合成的高保真对应物相比,在低温生长时亮氨酸到甲硫氨酸错义翻译过程中合成的A. pernix柠檬酸合酶具有增强的低温活性。我们的结果表明,条件性的亮氨酸到甲硫氨酸错义翻译可以使蛋白质进行调整,从而有可能通过促进在较低生理温度下实现更大蛋白质功能所需的增加的灵活性来提高嗜热蛋白质的低温活性。