Suppr超能文献

真菌遗传密码改变的回复将蛋白质组不稳定性与基因组和表型多样化联系起来。

Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification.

机构信息

RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11079-84. doi: 10.1073/pnas.1302094110. Epub 2013 Jun 17.

Abstract

Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.

摘要

许多真菌通过在数千个由亮氨酸(Leu)CUG 密码子编码的蛋白质位点掺入丝氨酸(Ser)来重新构建其蛋白质组。这些真菌如何在这种潜在致命的遗传密码改变中存活下来,以及这种改变对它们的生物学有何影响,目前尚不清楚。有趣的是,人类病原体白色念珠菌在 CUG 位点维持着可变的 Ser 和 Leu 掺入水平,这表明这种非典型密码子分配灵活性提供了一种有效的机制来改变遗传密码。为了验证这一假设,我们设计了白色念珠菌菌株,使蛋白质 CUG 位点的 Leu 错误掺入水平增加。对错误掺入的容忍度非常高,并且有一株菌能够完全将 CUG 身份从 Ser 恢复为 Leu。Leu 错误掺入水平的增加会降低生长速度,但在探测各种代谢网络、药物抗性和宿主免疫细胞反应的表型数组上产生表型多样性的能力令人印象深刻。基因组重测序显示,与对照菌株相比,多态性位点的基因型变化数量增加,80%的 Leu 错误掺入导致染色体 V 上一个大片段完全失去杂合性。这些数据揭示了基因翻译保真度、蛋白质组不稳定性和可变性、基因组多样化以及适应性表型多样性之间意想不到的联系。它们还解释了白色念珠菌基因组高度杂合的原因,并为进行基础和应用研究的遗传密码改变微生物的生产开辟了道路。

相似文献

5
Molecular reconstruction of a fungal genetic code alteration.真菌遗传密码改变的分子重构。
RNA Biol. 2013 Jun;10(6):969-80. doi: 10.4161/rna.24683. Epub 2013 Apr 17.

引用本文的文献

6
The tRNA identity landscape for aminoacylation and beyond.tRNA 识别景观:氨酰化及其他功能
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
7
Post-transcriptional control of antifungal resistance in human fungal pathogens.人类真菌病原体中抗真菌耐药性的转录后控制。
Crit Rev Microbiol. 2023 Aug;49(4):469-484. doi: 10.1080/1040841X.2022.2080527. Epub 2022 May 28.

本文引用的文献

3
The genetic code of the fungal CTG clade.真菌 CTG 分支的遗传密码。
C R Biol. 2011 Aug-Sep;334(8-9):607-11. doi: 10.1016/j.crvi.2011.05.008. Epub 2011 Jul 2.
5
Codon reassignment in the Escherichia coli genetic code.大肠杆菌遗传密码的密码子重排。
Nucleic Acids Res. 2010 Dec;38(22):8188-95. doi: 10.1093/nar/gkq707. Epub 2010 Aug 11.
7
Fast and accurate long-read alignment with Burrows-Wheeler transform.基于 Burrows-Wheeler 变换的快速准确长读比对。
Bioinformatics. 2010 Mar 1;26(5):589-95. doi: 10.1093/bioinformatics/btp698. Epub 2010 Jan 15.
9
The Sequence Alignment/Map format and SAMtools.序列比对/映射格式和 SAMtools。
Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验