Nocedal Isabel, Johnson Alexander D
Departments of Microbiology and Immunology and of Biochemistry and Biophysics, University of California, San Francisco, California 94158.
Cold Spring Harb Symp Quant Biol. 2015;80:265-74. doi: 10.1101/sqb.2015.80.027557. Epub 2015 Dec 9.
The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.
在进化时间尺度上,基因调控网络的重新布线会导致基因表达模式的变化,是物种间多样性的主要来源。然而,进化重新布线背后的分子机制才刚刚开始被理解。在这里,我们讨论了子囊菌酵母的最新分析,这些分析揭示了网络重新布线的几个一般原则。具体来说,我们讨论了转录网络如何在机制发生变化的情况下仍保持功能输出,特定类型的限制如何改变可用的进化轨迹,以及调控重新布线最终如何导致表型新奇性。我们还认为,现存基因调控网络的结构和“逻辑”在很大程度上可以由塑造其进化轨迹的限制来解释。