Gartz Hanson M, Aiken Jayne, Sietsema Daniel V, Sept David, Bates Emily A, Niswander Lee, Moore Jeffrey K
Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Dev Biol. 2016 Jan 15;409(2):406-19. doi: 10.1016/j.ydbio.2015.11.022. Epub 2015 Nov 30.
Mutations in the microtubule cytoskeleton are linked to cognitive and locomotor defects during development, and neurodegeneration in adults. How these mutations impact microtubules, and how this alters function at the level of neurons is an important area of investigation. Using a forward genetic screen in mice, we identified a missense mutation in Tuba1a α-tubulin that disrupts cortical and motor neuron development. Homozygous mutant mice exhibit cortical dysgenesis reminiscent of human tubulinopathies. Motor neurons fail to innervate target muscles in the limbs and show synapse defects at proximal targets. To directly examine effects on tubulin function, we created analogous mutations in the α-tubulin isotypes in budding yeast. These mutations sensitize yeast cells to microtubule stresses including depolymerizing drugs and low temperatures. Furthermore, we find that mutant α-tubulin is depleted from the cell lysate and from microtubules, thereby altering ratios of α-tubulin isotypes. Tubulin-binding cofactors suppress the effects of the mutation, indicating an important role for these cofactors in regulating the quality of the α-tubulin pool. Together, our results give new insights into the functions of Tuba1a, mechanisms for regulating tubulin proteostasis, and how compromising these may lead to neural defects.
微管细胞骨架的突变与发育过程中的认知和运动缺陷以及成人的神经退行性变有关。这些突变如何影响微管,以及这如何在神经元水平上改变功能是一个重要的研究领域。通过在小鼠中进行正向遗传学筛选,我们在Tuba1aα-微管蛋白中鉴定出一个错义突变,该突变破坏了皮质和运动神经元的发育。纯合突变小鼠表现出类似于人类微管病的皮质发育异常。运动神经元无法支配肢体中的靶肌肉,并在近端靶标处显示突触缺陷。为了直接检查对微管蛋白功能的影响,我们在芽殖酵母的α-微管蛋白同种型中创建了类似的突变。这些突变使酵母细胞对微管应激敏感,包括解聚药物和低温。此外,我们发现突变的α-微管蛋白从细胞裂解物和微管中耗尽,从而改变了α-微管蛋白同种型的比例。微管蛋白结合辅因子抑制了突变的影响,表明这些辅因子在调节α-微管蛋白池质量方面具有重要作用。总之,我们的结果为Tuba1a的功能、调节微管蛋白蛋白稳态的机制以及损害这些机制如何导致神经缺陷提供了新的见解。