Suppr超能文献

优化荚膜红细菌光合反应中心中的多步B侧电荷分离

Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus.

作者信息

Faries Kaitlyn M, Kressel Lucas L, Dylla Nicholas P, Wander Marc J, Hanson Deborah K, Holten Dewey, Laible Philip D, Kirmaier Christine

机构信息

Department of Chemistry, Washington University, St. Louis, MO 63130, United States.

Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, United States.

出版信息

Biochim Biophys Acta. 2016 Feb;1857(2):150-159. doi: 10.1016/j.bbabio.2015.11.013. Epub 2015 Dec 2.

Abstract

Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P(+)QB(-) yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P(+)QB(-) are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 μs. The resulting ranking of mutants for their yield of P(+)QB(-) from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P(+)HB(-)→P(+)QB(-) electron transfer or initial P*→P(+)HB(-) conversion highlight unmet challenges of optimizing both processes simultaneously.

摘要

利用高通量诱变、蛋白质分离和电荷分离功能的方法,我们检测了40个荚膜红细菌反应中心(RC)突变体,以测定它们利用通常无活性的B侧辅因子BB和HB(其中B是细菌叶绿素,H是细菌脱镁叶绿素)产生的P(+)QB(-)产率(P是细菌叶绿素二聚体,Q是泛醌)。两组突变体分别探索了M131(M多肽,靠近HB的天然残基为缬氨酸)处的所有可能残基,并与L181(L多肽,靠近BB的天然残基为苯丙氨酸)处固定的组氨酸或天冬酰胺串联。第三组突变体探索了L181处的所有可能残基,M131处有一个固定的谷氨酸,它可以与HB形成氢键。对于每组突变体,将探测P(+)QB(-)产率的快速毫秒筛选测定结果在该组内以及与本文报道的或之前报道的其他突变体进行比较。对于八个突变体的一个子集,通过跨度为100飞秒至50微秒的瞬态吸收测量,确定了各个B侧电子转移过程的速率常数和产率。超快实验得出的突变体P(+)QB(-)产率排名与毫秒筛选测定结果高度一致,进一步验证了用于B侧跨膜电荷分离的高效高通量筛选方法。单独显示出在优化P(+)HB(-)→P(+)QB(-)电子转移或初始P*→P(+)HB(-)转化方面取得进展的突变体结果,突出了同时优化这两个过程尚未解决的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验