Kirmaier Christine, Bautista James A, Laible Philip D, Hanson Deborah K, Holten Dewey
Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
J Phys Chem B. 2005 Dec 22;109(50):24160-72. doi: 10.1021/jp054726z.
Subpicosecond transient absorption studies are reported for a set of Rhodobacter (R.) capsulatus bacterial photosynthetic reaction centers (RCs) designed to probe the origins of the unidirectionality of charge separation via one of two electron transport chains in the native pigment-protein complex. All of the RCs have been engineered to contain a heterodimeric primary electron donor (D) consisting of a bacteriochlorophyll (BChl) and a bacteriopheophytin (BPh). The BPh component of the M heterodimer (Mhd) or L heterodimer (Lhd) is introduced by substituting a Leu for His M200 or His L173, respectively. Previous work on primary charge separation in heterodimer mutants has not included the Lhd RC from R. capsulatus, which we report for the first time. The Lhd and Mhd RCs are used as controls against which we assess RCs that combine the heterodimer mutations with a second mutation (His substituted for Leu at M212) that results in replacement of the native L-side BPh acceptor with a BChl (beta). The transient absorption spectra reveal clear evidence for charge separation to the normally inactive M-side BPh acceptor (H(M)) in Lhd-beta RCs to form D+H(M)- with a yield of approximately 6%. This state also forms in Mhd-beta RCs but with about one-quarter the yield. In both RCs, deactivation to the ground state is the predominant pathway of D decay, as it is in the Mhd and Lhd single mutants. Analysis of the results indicates an upper limit ofV2L/V2m < or = 4 for the contribution of the electronic coupling elements to the relative rates of electron transfer to the L versus M sides of the wild-type RC. In comparison to the L/M rate ratio (kL/kM) approximately 30 for wild-type RCs, our findings indicate that electronic factors contribute approximately 35% at most to directionality with the other 65% deriving from energetic considerations, which includes differences in free energies, reorganization energies, and contributions of one- and two-step mechanisms on the two sides of the RC.
本文报道了对一组荚膜红细菌(R. capsulatus)细菌光合反应中心(RCs)进行的亚皮秒瞬态吸收研究,这些反应中心旨在通过天然色素 - 蛋白质复合物中两条电子传输链之一来探究电荷分离单向性的起源。所有的反应中心都经过改造,含有一个由细菌叶绿素(BChl)和细菌脱镁叶绿素(BPh)组成的异二聚体初级电子供体(D)。通过分别用亮氨酸取代His M200或His L173,将M异二聚体(Mhd)或L异二聚体(Lhd)的BPh组分引入其中。先前关于异二聚体突变体中初级电荷分离的研究并未包括来自荚膜红细菌的Lhd RC,本文首次对此进行了报道。Lhd和Mhd RCs用作对照,以此评估将异二聚体突变与第二个突变(M212处His被Leu取代)相结合的反应中心,该突变导致天然L侧BPh受体被BChl(β)取代。瞬态吸收光谱清楚地表明,在Lhd - β RCs中电荷分离到通常无活性的M侧BPh受体(H(M)),形成D + H(M)-,产率约为6%。这种状态在Mhd - β RCs中也会形成,但产率约为其四分之一。在这两种反应中心中,与Mhd和Lhd单突变体一样,失活回到基态是D衰减的主要途径。结果分析表明,对于电子耦合元件对野生型RC中电子转移到L侧与M侧的相对速率的贡献,上限为V2L / V2m ≤ 4。与野生型RC的L / M速率比(kL / kM)约为30相比,我们的研究结果表明,电子因素对方向性的贡献最多约为35%,其余65%来自能量方面的考虑,这包括自由能、重组能的差异以及反应中心两侧单步和两步机制的贡献。