Department of Geology, Portland State University, Post Office Box 751, Portland, OR 97207, USA.
Department of Geology, University of Maryland, College Park, MD 20742, USA.
Science. 2015 Dec 11;350(6266):1349-52. doi: 10.1126/science.aad1929.
The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena.
地球深部地幔的粘度结构影响着地球的热演化、地幔柱的上升、俯冲海洋岩石圈的下沉以及地幔中成分不均匀性的混合。基于对长波非静力重力位的重新分析,我们使用一种允许我们避免关于其随深度变化的先验假设的方法来推断地幔的粘性分层。我们在 800-1200 公里深处探测到粘度的增加,远远大于定义地幔过渡带的矿物相变的深度。这种粘度的增加与地震层析成像所显示的板块停滞、地幔柱偏折以及大规模结构变化的深度相吻合,为这些现象提供了一个简单的解释。