Suppr超能文献

piRNA 通路保护生殖系基因组免受转座元件的影响。

The piRNA Pathway Guards the Germline Genome Against Transposable Elements.

作者信息

Tóth Katalin Fejes, Pezic Dubravka, Stuwe Evelyn, Webster Alexandre

机构信息

Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.

出版信息

Adv Exp Med Biol. 2016;886:51-77. doi: 10.1007/978-94-017-7417-8_4.

Abstract

Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributs significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore poses a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleoprotein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNA sequence to recognize complementary TE targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level - by attracting repressive chromatin modifications to genomic targets - and at the posttranscriptional level - by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cell death and sterility.The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems.

摘要

转座元件(TEs)具有复制并插入新基因组位置的能力。这对基因组的进化有重大贡献,但也可能导致DNA断裂和异常重组,因此对基因组完整性构成重大威胁。生殖细胞基因组的过度损伤会导致不育。一种特定的RNA沉默途径,称为piRNA途径,在动物的生殖细胞中发挥作用以控制TE的活性。piRNA途径的核心是一种核糖核蛋白复合体,它由一种称为piRNA的小RNA和来自AGO核酸酶PIWI亚家族的一种蛋白质组成。piRNA途径依赖于piRNA序列提供的特异性来识别互补的TE靶标,而效应功能则由PIWI蛋白提供。PIWI-piRNA复合体在转录水平上通过吸引抑制性染色质修饰到基因组靶标来沉默TE,在转录后水平上通过在细胞质中切割TE转录本来沉默TE。piRNA途径的损伤会导致TE的过度表达、基因组结构严重受损,并且不可避免地导致生殖细胞死亡和不育。在果蝇和小鼠中对piRNA途径的了解最为深入。本章概述了关于piRNA生物发生的当前知识,以及piRNA途径在转录和转录后沉默TE的机制细节。它还进一步关注了piRNA机制的翻译后修饰和亚细胞定位的重要性。最后,它简要描述了其他系统中的类似途径。

相似文献

1
The piRNA Pathway Guards the Germline Genome Against Transposable Elements.
Adv Exp Med Biol. 2016;886:51-77. doi: 10.1007/978-94-017-7417-8_4.
2
A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in .
J Biol Chem. 2018 Jun 15;293(24):9140-9147. doi: 10.1074/jbc.AC118.003264. Epub 2018 May 7.
3
Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway.
Dev Biol. 2014 Feb 1;386(1):237-51. doi: 10.1016/j.ydbio.2013.12.007. Epub 2013 Dec 16.
6
Natural variation of piRNA expression affects immunity to transposable elements.
PLoS Genet. 2017 Apr 27;13(4):e1006731. doi: 10.1371/journal.pgen.1006731. eCollection 2017 Apr.
8
piRNA-Guided Genome Defense: From Biogenesis to Silencing.
Annu Rev Genet. 2018 Nov 23;52:131-157. doi: 10.1146/annurev-genet-120417-031441.
9
Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery.
Genes Dev. 2015 Nov 1;29(21):2258-71. doi: 10.1101/gad.271908.115. Epub 2015 Oct 22.
10
Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity.
PLoS Genet. 2020 Jun 11;16(6):e1008861. doi: 10.1371/journal.pgen.1008861. eCollection 2020 Jun.

引用本文的文献

1
Genetic and epigenetic landscape of male infertility.
Trends Genet. 2025 Aug 21. doi: 10.1016/j.tig.2025.07.007.
2
Sex-stratified piRNA expression analysis reveals shared functional impacts of perinatal lead (Pb) exposure in murine hearts.
Epigenetics. 2025 Dec;20(1):2542879. doi: 10.1080/15592294.2025.2542879. Epub 2025 Aug 10.
3
Beyond Genes: Mechanistic and Epidemiological Insights into Paternal Environmental Influence on Offspring Health.
Curr Environ Health Rep. 2025 Aug 9;12(1):29. doi: 10.1007/s40572-025-00488-5.
4
piRNA-Mediated Maintenance of Genome Stability in Gametogenesis and Cancer.
Genes (Basel). 2025 Jun 20;16(7):722. doi: 10.3390/genes16070722.
7
Implications of Endogenous Small Regulatory RNAs on Gene Silencing in Mollusks.
bioRxiv. 2025 May 23:2025.05.19.654968. doi: 10.1101/2025.05.19.654968.
8
A specialized TFIIB is required for transcription of transposon-targeting noncoding RNAs.
Nucleic Acids Res. 2025 May 10;53(9). doi: 10.1093/nar/gkaf427.
10
piRNA/PIWI pathways and epigenetic crosstalk in human diseases: Molecular insights into HIV-1 infection and drugs of abuse.
Mol Ther Nucleic Acids. 2025 Feb 1;36(1):102473. doi: 10.1016/j.omtn.2025.102473. eCollection 2025 Mar 11.

本文引用的文献

1
The genetic makeup of the Drosophila piRNA pathway.
Mol Cell. 2013 Jun 6;50(5):762-77. doi: 10.1016/j.molcel.2013.04.031. Epub 2013 May 9.
2
A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila.
Mol Cell. 2013 Jun 6;50(5):736-48. doi: 10.1016/j.molcel.2013.04.006. Epub 2013 May 9.
3
A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway.
Mol Cell. 2013 Jun 6;50(5):749-61. doi: 10.1016/j.molcel.2013.04.007. Epub 2013 May 9.
4
An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes.
Mol Cell. 2013 Apr 11;50(1):67-81. doi: 10.1016/j.molcel.2013.02.016. Epub 2013 Mar 21.
5
Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state.
Genes Dev. 2013 Feb 15;27(4):390-9. doi: 10.1101/gad.209841.112. Epub 2013 Feb 7.
6
Multiple roles for Piwi in silencing Drosophila transposons.
Genes Dev. 2013 Feb 15;27(4):400-12. doi: 10.1101/gad.209767.112. Epub 2013 Feb 7.
7
The comprehensive epigenome map of piRNA clusters.
Nucleic Acids Res. 2013 Feb 1;41(3):1581-90. doi: 10.1093/nar/gks1275. Epub 2012 Dec 20.
8
Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression.
Cell. 2012 Nov 21;151(5):964-80. doi: 10.1016/j.cell.2012.10.040. Epub 2012 Nov 15.
9
UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery.
Cell. 2012 Nov 9;151(4):871-884. doi: 10.1016/j.cell.2012.09.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验