Suppr超能文献

用利尿剂探究肾单位中ROMK抑制剂的作用。

ROMK inhibitor actions in the nephron probed with diuretics.

作者信息

Kharade Sujay V, Flores Daniel, Lindsley Craig W, Satlin Lisa M, Denton Jerod S

机构信息

Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.

Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York.

出版信息

Am J Physiol Renal Physiol. 2016 Apr 15;310(8):F732-F737. doi: 10.1152/ajprenal.00423.2015. Epub 2015 Dec 9.

Abstract

Diuretics acting on specific nephron segments to inhibit Na reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca-activated K channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target.

摘要

作用于特定肾单位节段以抑制钠重吸收的利尿剂已在临床上使用了数十年;然而,药物相互作用、耐受性以及血清钾紊乱使其在实现目标血压的应用中变得复杂。ROMK是一个有吸引力的利尿剂靶点,部分原因是据推测其抑制作用可间接抑制布美他尼敏感的钠 - 钾 - 2氯共转运体(NKCC2)以及阿米洛利和苯扎米敏感的上皮钠通道(ENaC)。小分子ROMK抑制剂的开发为探索对ROMK抑制的生理反应创造了机会。本研究评估了单独抑制ROMK或与NKCC2、ENaC或氢氯噻嗪(HCTZ)靶点NCC联合抑制如何改变肾单位中的液体和电解质转运。当口服给予大鼠时,ROMK抑制剂VU591未能诱导利尿作用。然而,另一种ROMK抑制剂,称为化合物A,可诱导强烈的利钠利尿作用而无尿钾增多。化合物A与HCTZ、阿米洛利或苯扎米联合使用时对尿量和钠排泄产生相加作用,但与布美他尼共同给药时则不然,这表明主要的利尿靶点部位是髓袢升支粗段(TAL)。有趣的是,化合物A抑制了布美他尼和HCTZ诱导的尿钾增多反应,我们将此效应归因于对TAL和集合管中ROMK介导的钾分泌的抑制。化合物A对异源表达的流量敏感的大电导钙激活钾通道(Slo1/β1)没有影响。总之,化合物A是研究ROMK抑制的肾脏后果以及ROMK作为利尿剂靶点的治疗潜力的一种重要的新药理学工具。

相似文献

1
ROMK inhibitor actions in the nephron probed with diuretics.
Am J Physiol Renal Physiol. 2016 Apr 15;310(8):F732-F737. doi: 10.1152/ajprenal.00423.2015. Epub 2015 Dec 9.
2
Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity.
Am J Physiol Renal Physiol. 2008 Jun;294(6):F1366-72. doi: 10.1152/ajprenal.00608.2007. Epub 2008 Apr 2.
3
Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F1120-F1127. doi: 10.1152/ajprenal.00662.2016. Epub 2017 Feb 22.
4
Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis.
J Pharmacol Exp Ther. 2014 Jan;348(1):153-64. doi: 10.1124/jpet.113.208603. Epub 2013 Oct 18.
6
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
7
Responses of distal nephron Na transporters to acute volume depletion and hyperkalemia.
Am J Physiol Renal Physiol. 2017 Jul 1;313(1):F62-F73. doi: 10.1152/ajprenal.00668.2016. Epub 2017 Mar 29.
8
Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.
9
Acute inhibition of NCC does not activate distal electrogenic Na+ reabsorption or kaliuresis.
Am J Physiol Renal Physiol. 2014 Feb 15;306(4):F457-67. doi: 10.1152/ajprenal.00339.2013. Epub 2014 Jan 8.
10
Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F435-F449. doi: 10.1152/ajprenal.00403.2023. Epub 2024 May 23.

引用本文的文献

3
Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology.
Am J Physiol Cell Physiol. 2021 Jun 1;320(6):C1125-C1140. doi: 10.1152/ajpcell.00548.2020. Epub 2021 Apr 7.
5
Discovery and in Vitro Optimization of 3-Sulfamoylbenzamides as ROMK Inhibitors.
ACS Med Chem Lett. 2018 Jan 19;9(2):125-130. doi: 10.1021/acsmedchemlett.7b00481. eCollection 2018 Feb 8.
6
7
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection.
Biochem J. 2017 Jun 9;474(12):2067-2094. doi: 10.1042/BCJ20160623.
8
Discovery of MK-7145, an Oral Small Molecule ROMK Inhibitor for the Treatment of Hypertension and Heart Failure.
ACS Med Chem Lett. 2016 May 12;7(7):697-701. doi: 10.1021/acsmedchemlett.6b00122. eCollection 2016 Jul 14.

本文引用的文献

1
Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis.
J Pharmacol Exp Ther. 2014 Jan;348(1):153-64. doi: 10.1124/jpet.113.208603. Epub 2013 Oct 18.
2
Novel diuretic targets.
Am J Physiol Renal Physiol. 2013 Oct 1;305(7):F931-42. doi: 10.1152/ajprenal.00230.2013. Epub 2013 Jul 17.
3
Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel.
Mol Pharmacol. 2011 Jan;79(1):42-50. doi: 10.1124/mol.110.066928. Epub 2010 Oct 6.
4
Rare independent mutations in renal salt handling genes contribute to blood pressure variation.
Nat Genet. 2008 May;40(5):592-599. doi: 10.1038/ng.118. Epub 2008 Apr 6.
6
Effect of furosemide on Na+ and K+ transport studied by microperfusion of the rat nephron.
Am J Physiol. 1970 Jan;218(1):292-7. doi: 10.1152/ajplegacy.1970.218.1.292.
7
Tubular action of diuretics: distal effects on electrolyte transport and acidification.
Kidney Int. 1985 Sep;28(3):477-89. doi: 10.1038/ki.1985.154.
8
Conductive properties of the rabbit outer medullary collecting duct: outer stripe.
Am J Physiol. 1986 Jan;250(1 Pt 2):F70-6. doi: 10.1152/ajprenal.1986.250.1.F70.
9
Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct.
Am J Physiol. 1989 May;256(5 Pt 2):F862-8. doi: 10.1152/ajprenal.1989.256.5.F862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验