Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany.
Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Angew Chem Int Ed Engl. 2016 Jan 22;55(4):1514-8. doi: 10.1002/anie.201508531. Epub 2015 Dec 10.
We show that, all other conditions being equal, bond cleavage in the middle of molecules is entropically much more favored than bond cleavage at the end. Multiple experimental and theoretical approaches have been used to study the selectivity for bond cleavage or dissociation in the middle versus the end of both covalent and supramolecular adducts and the extensive implications for other fields of chemistry including, e.g., chain transfer, polymer degradation, and control agent addition are discussed. The observed effects, which are a consequence of the underlying entropic factors, were predicted on the basis of simple theoretical models and demonstrated via high-temperature (HT) NMR spectroscopy of self-assembled supramolecular diblock systems as well as temperature-dependent size-exclusion chromatography (TD SEC) of covalently bonded Diels-Alder step-growth polymers.
我们证明,在其他条件相同的情况下,分子中间的键断裂在熵方面比末端的键断裂更有利。已经使用了多种实验和理论方法来研究共价和超分子加合物中中间与末端键断裂或解离的选择性,以及对包括链转移、聚合物降解和控制剂添加在内的其他化学领域的广泛影响。这些观察到的效应是由于潜在的熵因素造成的,它们是基于简单的理论模型预测的,并通过自组装超分子二嵌段系统的高温(HT)NMR 光谱以及共价键合的 Diels-Alder 逐步增长聚合物的温度依赖性尺寸排阻色谱(TDSEC)得到了证明。