School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
Acc Chem Res. 2014 Jul 15;47(7):2006-16. doi: 10.1021/ar500057e. Epub 2014 Apr 29.
CONSPECTUS: Supramolecular dendritic polymers (SDPs), which perfectly combine the advantages of dendritic polymers with those of supramolecular polymers, are a novel class of non-covalently bonded, highly branched macromolecules with three-dimensional globular topology. Because of their dynamic/reversible nature, unique topological structure, and exceptional physical/chemical properties (e.g., low viscosity, high solubility, and a large number of functional terminal groups), SDPs have attracted increasing attention in recent years in both academic and industrial fields. In particular, the reversibility of non-covalent interactions endows SDPs with the ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, such as pH, temperature, light, stress, and redox agents, which further provides a flexible and robust platform for designing and developing smart supramolecular polymeric materials and functional supramolecular devices. The existing SDPs can be systematically classified into the following six major types according to their topological features: supramolecular dendrimers, supramolecular dendronized polymers, supramolecular hyperbranched polymers, supramolecular linear-dendritic block copolymers, supramolecular dendritic-dendritic block copolymers, and supramolecular dendritic multiarm copolymers. These different types of SDPs possess distinct morphologies, unique architectures, and specific functions. Benefiting from their versatile topological structures as well as stimuli-responsive properties, SDPs have displayed not only unique characteristics or advantages in supramolecular self-assembly behaviors (e.g., controllable morphologies, specific performance, and facile functionalization) but also great potential to be promising candidates in various fields. In this Account, we summarize the recent progress in the synthesis, functionalization, and self-assembly of SDPs as well as their potential applications in a wide range of fields. A variety of synthetic methods using non-covalent interactions have been established to prepare different types of SDPs based on varied mono- or multifunctionalized building blocks (e.g., monomer, dendron, dendrimer, and hyperbranched polymer) with homo- or heterocomplementary units. In addition, SDPs can be further endowed with excellent functionalities by employing different modification approaches involving terminal, focal-point, and backbone modification. Similar to conventional dendritic polymers, SDPs can self-assemble into diverse supramolecular structures such as micelles, vesicles, fibers, nanorings, tubes, and many hierarchical structures. Finally, we highlight some typical examples of recent applications of SDP-based systems in biomedical fields (e.g., controlled drug/gene/protein delivery, bioimaging, and biomimetic chemistry), nanotechnology (e.g., nanoreactors, catalysis, and molecular imprinting), and functional materials. The current research on SDPs is still at the very early stage, and much more work needs to be done. We anticipate that future studies of SDPs will focus on developing multifunctional, hierarchical supramolecular materials toward their practical applications by utilization of cooperative non-covalent interactions.
概述:超分子树枝状聚合物(SDPs)是一类新型的非共价键合的高度支化大分子,具有三维球状拓扑结构,它完美地结合了树枝状聚合物和超分子聚合物的优点。由于其动态/可逆性、独特的拓扑结构以及特殊的物理/化学性质(例如低粘度、高溶解度和大量功能端基),近年来,SDPs 在学术和工业领域都引起了越来越多的关注。特别是,非共价相互作用的可逆性赋予了 SDPs 能力,使其能够对外界各种刺激(例如 pH 值、温度、光、应力和氧化还原试剂)做出结构、形态和功能的动态切换,这进一步为设计和开发智能超分子聚合材料和功能超分子器件提供了灵活和强大的平台。根据其拓扑特征,现有的 SDP 可以系统地分为以下六大类:超分子树状大分子、超分子树状化聚合物、超分子超支化聚合物、超分子线性-树枝状嵌段共聚物、超分子树枝状-树枝状嵌段共聚物和超分子树枝状多臂共聚物。这些不同类型的 SDP 具有不同的形态、独特的结构和特定的功能。得益于其多功能拓扑结构和对刺激的响应特性,SDPs 在超分子自组装行为(例如可控形态、特定性能和易于功能化)中不仅表现出独特的特征或优势,而且在各个领域都有很大的潜力成为有前途的候选者。本综述总结了 SDP 的合成、功能化和自组装及其在广泛领域中的潜在应用的最新进展。已经建立了多种使用非共价相互作用的合成方法,基于各种单或多功能化的构建块(例如单体、树枝、树状大分子和超支化聚合物)来制备不同类型的 SDP,这些构建块具有同或异互补单元。此外,通过采用涉及末端、焦点和主链修饰的不同修饰方法,可以进一步赋予 SDP 优异的功能。与传统的树枝状聚合物类似,SDP 可以自组装成多种超分子结构,例如胶束、囊泡、纤维、纳米环、管和许多分级结构。最后,我们强调了基于 SDP 的系统在生物医学领域(例如,控制药物/基因/蛋白质的递送、生物成像和仿生化学)、纳米技术(例如,纳米反应器、催化和分子印迹)和功能材料中的一些典型应用的最新示例。SDP 的当前研究仍处于早期阶段,需要做更多的工作。我们预计,未来 SDP 的研究将侧重于通过利用协同非共价相互作用来开发多功能、分级超分子材料,以实现其实际应用。
Acc Chem Res. 2014-4-29
Chem Commun (Camb). 2014-10-18
Acc Chem Res. 2014-5-29
Acc Chem Res. 2012-6-22
Acc Chem Res. 2014-3-26
Chem Commun (Camb). 2014-10-21
Gels. 2024-12-13
Polymers (Basel). 2023-11-9
Molecules. 2023-2-3
Chemistry. 2021-12-23