Suppr超能文献

亚硝酸还原酶对于铜绿假单胞菌在与口腔共生菌血链球菌共同感染期间的存活至关重要。

Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis.

作者信息

Scoffield Jessica A, Wu Hui

机构信息

Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Microbiology (Reading). 2016 Feb;162(2):376-383. doi: 10.1099/mic.0.000226. Epub 2015 Dec 15.

Abstract

Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in cystic fibrosis (CF) patients. However, recent evidence suggests that the polymicrobial community of the CF lung may also harbour oral streptococci, and colonization by these micro-organisms may have a negative impact on P. aeruginosa within the CF lung. Our previous studies demonstrated that nitrite abundance plays an important role in P. aeruginosa survival during co-infection with oral streptococci. Nitrite reductase is a key enzyme involved in nitrite metabolism. Therefore, the objective of this study was to examine the role nitrite reductase (gene nirS) plays in P. aeruginosa survival during co-infection with an oral streptococcus, Streptococcus parasanguinis. Inactivation of nirS in both the chronic CF isolate FRD1 and acute wound isolate PAO1 reduced the survival rate of P. aeruginosa when co-cultured with S. parasanguinis. Growth of both mutants was restored when co-cultured with S. parasanguinis that was defective for H2O2 production. Furthermore, the nitrite reductase mutant was unable to kill Drosophila melanogaster during co-infection with S. parasanguinis. Taken together, these results suggest that nitrite reductase plays an important role for survival of P. aeruginosa during co-infection with S. parasanguinis.

摘要

铜绿假单胞菌是囊性纤维化(CF)患者慢性肺部感染的主要病原体。然而,最近的证据表明,CF肺部的微生物群落中也可能存在口腔链球菌,这些微生物的定殖可能会对CF肺部的铜绿假单胞菌产生负面影响。我们之前的研究表明,亚硝酸盐丰度在铜绿假单胞菌与口腔链球菌共感染期间的存活中起着重要作用。亚硝酸还原酶是参与亚硝酸盐代谢的关键酶。因此,本研究的目的是探讨亚硝酸还原酶(nirS基因)在铜绿假单胞菌与口腔链球菌——血链球菌共感染期间的存活中所起的作用。在慢性CF分离株FRD1和急性伤口分离株PAO1中nirS的失活降低了铜绿假单胞菌与血链球菌共培养时的存活率。当与过氧化氢产生缺陷的血链球菌共培养时,两种突变体的生长得以恢复。此外,在与血链球菌共感染期间,亚硝酸还原酶突变体无法杀死黑腹果蝇。综上所述,这些结果表明亚硝酸还原酶在铜绿假单胞菌与血链球菌共感染期间的存活中起着重要作用。

相似文献

1
Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis.
Microbiology (Reading). 2016 Feb;162(2):376-383. doi: 10.1099/mic.0.000226. Epub 2015 Dec 15.
2
Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa.
Infect Immun. 2015 Jan;83(1):101-7. doi: 10.1128/IAI.02396-14. Epub 2014 Oct 13.
3
A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation.
PLoS Pathog. 2017 Apr 27;13(4):e1006300. doi: 10.1371/journal.ppat.1006300. eCollection 2017 Apr.
4
A Commensal Streptococcus Dysregulates the Nitrosative Stress Response.
Front Cell Infect Microbiol. 2022 May 10;12:817336. doi: 10.3389/fcimb.2022.817336. eCollection 2022.
5
An oral commensal attenuates -induced airway inflammation and modulates nitrite flux in respiratory epithelium.
Microbiol Spectr. 2023 Dec 12;11(6):e0219823. doi: 10.1128/spectrum.02198-23. Epub 2023 Oct 6.
8
The Yin and Yang of Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions.
J Bacteriol. 2019 May 8;201(11). doi: 10.1128/JB.00115-19. Print 2019 Jun 1.
10
Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00014-19. Print 2019 Apr 15.

引用本文的文献

1
Oral microbiota and respiratory diseases: advances and perspectives.
Clin Microbiol Rev. 2025 Jun 12;38(2):e0015024. doi: 10.1128/cmr.00150-24. Epub 2025 Apr 2.
2
Streptococcus taoyuanensis sp. nov., a Novel Species Isolated from a Patient with Bacteremia.
Curr Microbiol. 2024 Jul 29;81(9):286. doi: 10.1007/s00284-024-03806-6.
3
Dpr-mediated HO resistance contributes to streptococcus survival in a cystic fibrosis airway model system.
J Bacteriol. 2024 Jul 25;206(7):e0017624. doi: 10.1128/jb.00176-24. Epub 2024 Jun 28.
4
as a model to study polymicrobial synergy and dysbiosis.
Front Cell Infect Microbiol. 2023 Dec 21;13:1279380. doi: 10.3389/fcimb.2023.1279380. eCollection 2023.
5
as an organism model for studying cystic fibrosis and its major associated microbial infections.
Infect Immun. 2023 Nov 16;91(11):e0024023. doi: 10.1128/iai.00240-23. Epub 2023 Oct 17.
6
A Commensal Streptococcus Dysregulates the Nitrosative Stress Response.
Front Cell Infect Microbiol. 2022 May 10;12:817336. doi: 10.3389/fcimb.2022.817336. eCollection 2022.
7
Nitrite Triggers Reprogramming of the Oral Polymicrobial Metabolome by a Commensal Streptococcus.
Front Cell Infect Microbiol. 2022 Mar 1;12:833339. doi: 10.3389/fcimb.2022.833339. eCollection 2022.
8
Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce Induced Inflammation.
Front Cell Infect Microbiol. 2022 Jan 31;12:824101. doi: 10.3389/fcimb.2022.824101. eCollection 2022.
9
Relationships Between Oral Microecosystem and Respiratory Diseases.
Front Mol Biosci. 2022 Jan 4;8:718222. doi: 10.3389/fmolb.2021.718222. eCollection 2021.
10
Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of .
Antibiotics (Basel). 2021 Jul 7;10(7):827. doi: 10.3390/antibiotics10070827.

本文引用的文献

2
Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa.
Infect Immun. 2015 Jan;83(1):101-7. doi: 10.1128/IAI.02396-14. Epub 2014 Oct 13.
3
Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7819-24. doi: 10.1073/pnas.1400586111. Epub 2014 May 13.
4
Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.
PLoS One. 2014 Mar 26;9(3):e88645. doi: 10.1371/journal.pone.0088645. eCollection 2014.
5
Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.
PLoS One. 2014 Mar 24;9(3):e91813. doi: 10.1371/journal.pone.0091813. eCollection 2014.
7
Nitrite reductase NirBD is induced and plays an important role during in vitro dormancy of Mycobacterium tuberculosis.
J Bacteriol. 2013 Oct;195(20):4592-9. doi: 10.1128/JB.00698-13. Epub 2013 Aug 9.
8
Effect of nitroxides on swarming motility and biofilm formation, multicellular behaviors in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2013 Oct;57(10):4877-81. doi: 10.1128/AAC.01381-13. Epub 2013 Jul 22.
9
The oral microbiome and nitric oxide homoeostasis.
Oral Dis. 2015 Jan;21(1):7-16. doi: 10.1111/odi.12157. Epub 2013 Jul 10.
10
HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells.
Infect Immun. 2012 Sep;80(9):3319-31. doi: 10.1128/IAI.00561-12. Epub 2012 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验