Suppr超能文献

流体粘度影响脂质包裹微泡的破碎和惯性空化阈值。

Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.

作者信息

Helfield Brandon, Black John J, Qin Bin, Pacella John, Chen Xucai, Villanueva Flordeliza S

机构信息

Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

出版信息

Ultrasound Med Biol. 2016 Mar;42(3):782-94. doi: 10.1016/j.ultrasmedbio.2015.10.023. Epub 2015 Dec 7.

Abstract

Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations.

摘要

用于治疗应用的超声和微泡优化研究通常在水/盐溶液中进行,流体粘度为1厘泊。在体内环境中,微泡存在于血液中,血液是一种粘度更高的流体(约4厘泊)。在本研究中,采用超高速显微镜和被动空化方法,研究了在1兆赫兹、高压(0.25 - 2兆帕)条件下,流体粘度对微泡行为的影响。尽管单个微泡(n = 220)在4厘泊流体中的最大径向偏移与在1厘泊流体中相似,但发现其破碎倾向在4厘泊流体中相比1厘泊流体显著降低。与在1厘泊流体中的微泡群体相比,稀释在4厘泊流体中的微泡群体宽带发射减少(高达10.2倍),并且随着压力增加,谐波发射峰(如超谐波)越来越明显。这些结果表明,在体外研究过渡到体内评估之前,应考虑使用生理粘度灌注液进行评估。

相似文献

1
Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
Ultrasound Med Biol. 2016 Mar;42(3):782-94. doi: 10.1016/j.ultrasmedbio.2015.10.023. Epub 2015 Dec 7.
2
Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity.
J Acoust Soc Am. 2016 Jan;139(1):204-14. doi: 10.1121/1.4939123.
3
The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz.
Ultrasound Med Biol. 2013 Feb;39(2):345-59. doi: 10.1016/j.ultrasmedbio.2012.09.011. Epub 2012 Dec 4.
5
Influence of shell composition on the resonance frequency of microbubble contrast agents.
Ultrasound Med Biol. 2013 Jul;39(7):1292-302. doi: 10.1016/j.ultrasmedbio.2013.02.462. Epub 2013 May 15.
7
Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
Ultrasound Med Biol. 2010 May;36(5):840-52. doi: 10.1016/j.ultrasmedbio.2010.02.009.
8
Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening.
Ultrasound Med Biol. 2014 Jan;40(1):130-7. doi: 10.1016/j.ultrasmedbio.2013.09.015. Epub 2013 Nov 14.
9
An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
Ultrason Sonochem. 2023 Feb;93:106291. doi: 10.1016/j.ultsonch.2023.106291. Epub 2023 Jan 5.
10
Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1992-2002. doi: 10.1109/tuffc.2005.1561668.

引用本文的文献

1
Immunomodulation of human T cells by microbubble-mediated focused ultrasound.
Front Immunol. 2024 Oct 22;15:1486744. doi: 10.3389/fimmu.2024.1486744. eCollection 2024.
2
Ultrasound enhanced siRNA delivery using cationic liposome-microbubble complexes for the treatment of squamous cell carcinoma.
Nanotheranostics. 2024 Mar 9;8(3):285-297. doi: 10.7150/ntno.90516. eCollection 2024.
4
In Vitro and In Vivo Evaluation of Ultrasound-Triggered Release From Novel Spinal Device.
J Ultrasound Med. 2023 Oct;42(10):2357-2368. doi: 10.1002/jum.16263. Epub 2023 May 30.
5
Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Apr;49(4):996-1006. doi: 10.1016/j.ultrasmedbio.2022.12.013. Epub 2023 Jan 24.
7
Characterization of the interaction of nanobubble ultrasound contrast agents with human blood components.
Bioact Mater. 2022 May 11;19:642-652. doi: 10.1016/j.bioactmat.2022.05.001. eCollection 2023 Jan.
8
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery.
Pharmaceutics. 2022 Apr 18;14(4):886. doi: 10.3390/pharmaceutics14040886.
9
The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli.
Ultrason Sonochem. 2021 Nov;79:105776. doi: 10.1016/j.ultsonch.2021.105776. Epub 2021 Oct 7.
10
STAT3 decoy oligonucleotide-carrying microbubbles with pulsed ultrasound for enhanced therapeutic effect in head and neck tumors.
PLoS One. 2020 Nov 18;15(11):e0242264. doi: 10.1371/journal.pone.0242264. eCollection 2020.

本文引用的文献

1
Gene delivery to the spinal cord using MRI-guided focused ultrasound.
Gene Ther. 2015 Jul;22(7):568-77. doi: 10.1038/gt.2015.25. Epub 2015 Apr 23.
2
Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study.
Ultrasound Med Biol. 2015 Feb;41(2):456-64. doi: 10.1016/j.ultrasmedbio.2014.09.033. Epub 2014 Dec 23.
4
Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.
Ultrasound Med Biol. 2014 Sep;40(9):2134-50. doi: 10.1016/j.ultrasmedbio.2014.03.008. Epub 2014 May 29.
5
Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1285-94. doi: 10.1109/TBME.2014.2300838.
6
Drug delivery across the blood-brain barrier using focused ultrasound.
Expert Opin Drug Deliv. 2014 May;11(5):711-21. doi: 10.1517/17425247.2014.897693. Epub 2014 Mar 20.
7
The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles.
Phys Med Biol. 2014 Apr 7;59(7):1721-45. doi: 10.1088/0031-9155/59/7/1721. Epub 2014 Mar 12.
9
Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects.
Rev Sci Instrum. 2013 Jun;84(6):063701. doi: 10.1063/1.4809168.
10
Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.
J Control Release. 2013 Sep 28;170(3):401-13. doi: 10.1016/j.jconrel.2013.05.039. Epub 2013 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验