Suppr超能文献

长时间超声短脉冲激发过程中微泡的动态行为:利用高速成像和空化检测对超声-微泡介导治疗的机制洞察

Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.

作者信息

Chen Xucai, Wang Jianjun, Pacella John J, Villanueva Flordeliza S

机构信息

Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.

出版信息

Ultrasound Med Biol. 2016 Feb;42(2):528-538. doi: 10.1016/j.ultrasmedbio.2015.09.017. Epub 2015 Nov 18.

Abstract

Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects.

摘要

超声(US)-微泡(MB)介导的疗法已被发现可恢复灌注并增强药物/基因递送。基于在高声压下长时间超声暴露期间微泡不会持续存在的假设,大多数方案在采用高声压时使用短超声脉冲。然而,我们最近观察到在高声压下使用长超声脉冲可增强溶栓效果。因此,我们通过直接高速光学观察和被动空化检测,探索了在不同声压和微泡浓度下长脉冲串暴露(5毫秒)期间微泡的命运。微泡首先根据声压经历稳定空化或惯性空化,然后形成充满气体的团簇,这些团簇继续振荡、破裂并形成新的团簇。空化检测证实了在整个5毫秒的超声激发过程中,尽管声活动在减弱,但仍持续存在。这些数据表明,长脉冲串期间持续的空化活动可能会带来额外的治疗效果。

相似文献

2
Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Apr;49(4):996-1006. doi: 10.1016/j.ultrasmedbio.2022.12.013. Epub 2023 Jan 24.
4
An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
Ultrason Sonochem. 2023 Feb;93:106291. doi: 10.1016/j.ultsonch.2023.106291. Epub 2023 Jan 5.
5
Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
Ultrasound Med Biol. 2016 Feb;42(2):518-27. doi: 10.1016/j.ultrasmedbio.2015.08.014. Epub 2015 Nov 4.
6
Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
Phys Med Biol. 2014 Nov 21;59(22):6941-57. doi: 10.1088/0031-9155/59/22/6941. Epub 2014 Oct 28.
7
Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
Ultrasound Med Biol. 2016 Mar;42(3):782-94. doi: 10.1016/j.ultrasmedbio.2015.10.023. Epub 2015 Dec 7.
8
Superharmonic microbubble Doppler effect in ultrasound therapy.
Phys Med Biol. 2016 Aug 21;61(16):6154-71. doi: 10.1088/0031-9155/61/16/6154. Epub 2016 Jul 29.
9
In vitro sonothrombolysis of human blood clots with BR38 microbubbles.
Ultrasound Med Biol. 2012 Jul;38(7):1222-33. doi: 10.1016/j.ultrasmedbio.2012.02.023. Epub 2012 Apr 27.
10
Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.
Proc Inst Mech Eng H. 2010;224(2):171-91. doi: 10.1243/09544119JEIM622.

引用本文的文献

1
Sonothrombolysis: State-of-the-Art and Potential Applications in Children.
Children (Basel). 2023 Dec 31;11(1):57. doi: 10.3390/children11010057.
2
Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Apr;49(4):996-1006. doi: 10.1016/j.ultrasmedbio.2022.12.013. Epub 2023 Jan 24.
3
Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Jan;49(1):152-164. doi: 10.1016/j.ultrasmedbio.2022.08.009. Epub 2022 Oct 15.
4
Lipid nitroalkene nanoparticles for the focal treatment of ischemia reperfusion.
Nanotheranostics. 2022 Jan 1;6(2):215-229. doi: 10.7150/ntno.62351. eCollection 2022.
5
Lytic Release of Cellular ATP: Physiological Relevance and Therapeutic Applications.
Life (Basel). 2021 Jul 16;11(7):700. doi: 10.3390/life11070700.
9
Formulation and Characterization of Chemically Cross-linked Microbubble Clusters.
Langmuir. 2019 Aug 20;35(33):10977-10986. doi: 10.1021/acs.langmuir.9b00475. Epub 2019 Aug 7.
10
The effect of 220 kHz insonation scheme on rt-PA thrombolytic efficacy in vitro.
Phys Med Biol. 2019 Aug 21;64(16):165015. doi: 10.1088/1361-6560/ab293b.

本文引用的文献

1
Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction.
Biochem Biophys Res Commun. 2015 Mar 20;458(4):823-9. doi: 10.1016/j.bbrc.2015.02.038. Epub 2015 Feb 19.
2
Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study.
Ultrasound Med Biol. 2015 Feb;41(2):456-64. doi: 10.1016/j.ultrasmedbio.2014.09.033. Epub 2014 Dec 23.
3
Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis.
J Control Release. 2015 Jan 10;197:20-8. doi: 10.1016/j.jconrel.2014.10.031. Epub 2014 Nov 6.
4
Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis.
Ultrasound Med Biol. 2015 Jan;41(1):187-96. doi: 10.1016/j.ultrasmedbio.2014.08.018. Epub 2014 Nov 15.
5
Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration.
Ultrasound Med Biol. 2014 Jul;40(7):1545-53. doi: 10.1016/j.ultrasmedbio.2014.01.015. Epub 2014 Mar 7.
6
Sonoporation-induced depolarization of plasma membrane potential: analysis of heterogeneous impact.
Ultrasound Med Biol. 2014 May;40(5):979-89. doi: 10.1016/j.ultrasmedbio.2013.11.024. Epub 2014 Jan 22.
7
Understanding ultrasound induced sonoporation: definitions and underlying mechanisms.
Adv Drug Deliv Rev. 2014 Jun;72:49-64. doi: 10.1016/j.addr.2013.11.008. Epub 2013 Nov 21.
8
New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.
Ultrasound Med Biol. 2014 Jan;40(1):258-62. doi: 10.1016/j.ultrasmedbio.2013.08.021. Epub 2013 Oct 18.
9
Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects.
Rev Sci Instrum. 2013 Jun;84(6):063701. doi: 10.1063/1.4809168.
10
Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.
J Control Release. 2013 Sep 28;170(3):401-13. doi: 10.1016/j.jconrel.2013.05.039. Epub 2013 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验