Suppr超能文献

使用猴子自动学习设备(ALDM)来研究社交网络。

Using Automated Learning Devices for Monkeys (ALDM) to study social networks.

作者信息

Claidière Nicolas, Gullstrand Julie, Latouche Aurélien, Fagot Joël

机构信息

Laboratoire de Psychologie Cognitive UMR 7290, Aix Marseille Université and Centre Nationale de la Recherche Scientifique, Marseille, 13331, France.

EA 4629, Conservatoire National des Arts et Métiers, Paris, France.

出版信息

Behav Res Methods. 2017 Feb;49(1):24-34. doi: 10.3758/s13428-015-0686-9.

Abstract

Social network analysis has become a prominent tool to study animal social life, and there is an increasing need to develop new systems to collect social information automatically, systematically, and reliably. Here we explore the use of a freely accessible Automated Learning Device for Monkeys (ALDM) to collect such social information on a group of 22 captive baboons (Papio papio). We compared the social network obtained from the co-presence of the baboons in ten ALDM testing booths to the social network obtained through standard behavioral observation techniques. The results show that the co-presence network accurately reflects the social organization of the group, and also indicate under which conditions the co-presence network is most informative. In particular, the best correlation between the two networks was obtained with a minimum of 40 days of computer records and for individuals with at least 500 records per day. We also show through random permutation tests that the observed correlations go beyond what would be observed by simple synchronous activity, to reflect a preferential choice of closely located testing booths. The use of automatized cognitive testing therefore presents a new way of obtaining a large and regular amount of social information that is necessary to develop social network analysis. It also opens the possibility of studying dynamic changes in network structure with time and in relation to the cognitive performance of individuals.

摘要

社会网络分析已成为研究动物社会生活的一种重要工具,并且越来越需要开发新系统来自动、系统且可靠地收集社会信息。在此,我们探索使用一种可免费获取的猴子自动学习装置(ALDM)来收集关于一群22只圈养狒狒(巴氏狒狒)的此类社会信息。我们将从狒狒在十个ALDM测试 booths 中的共同出现情况获得的社会网络与通过标准行为观察技术获得的社会网络进行了比较。结果表明,共同出现网络准确反映了群体的社会组织,并且还指出了共同出现网络在哪些条件下信息最丰富。特别是,两个网络之间的最佳相关性是在至少40天的计算机记录以及个体每天至少有500条记录的情况下获得的。我们还通过随机排列测试表明,观察到的相关性超出了简单同步活动所观察到的范围,以反映对位置相近的测试 booths 的优先选择。因此,使用自动化认知测试提供了一种获取大量且定期的社会信息的新方法,这对于开展社会网络分析是必要的。它还开启了研究网络结构随时间以及与个体认知表现相关的动态变化的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验