Suppr超能文献

Gn1a的人工选择在提高不同生态区域的水稻产量方面发挥着重要作用。

Artificial Selection of Gn1a Plays an Important role in Improving Rice Yields Across Different Ecological Regions.

作者信息

Wang Jie, Xu Huaxue, Li Nengwu, Fan Fengfeng, Wang Liuting, Zhu Yingguo, Li Shaoqing

机构信息

State Key Laboratory of Hybrid Rice; Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Science, Wuhan University, Wuhan, 430072, China.

出版信息

Rice (N Y). 2015 Dec;8(1):37. doi: 10.1186/s12284-015-0071-4. Epub 2015 Dec 16.

Abstract

BACKGROUND

Rice is one of the most important crops, and it is essential to improve rice productivity to satisfy the future global food supply demands. Gn1a (OsCKX2), which encodes cytokinin oxidase/dehydrogenase, plays an important role in regulating rice grain yield.

RESULTS

In this study, we analyzed the genetic variation of Gn1a, which influences grain yield through controlling the number of spikelets in rice. The allelic variations in the promoter, 5' untranslated region (UTR) and coding sequence (CDS) of Gn1a were investigated in 175 cultivars and 21 wild rice accessions. We found that Gn1a showed less sequence variation in the cultivars, but exhibited significant nucleotide diversity in wild rice. A total of 14 alleles, named AP1 to AP14, were identified in the cultivars based on the amino acid divergence of GN1A. Association analysis revealed that the number of spikelets and grain yield were significantly different between the different alleles. Phylogenetic analysis indicated that the three main alleles, AP3, AP8 and AP9, in the cultivars might originate from a common ancestor allele, AP1, in wild rice.

CONCLUSIONS

Of these alleles in the cultivars, AP9 was suggested as the best allele in indica, as it has shown strong artificial selection in breeding high-yield rice in the past. It might be valuable to explore the high-yield-related alleles of Gn1a to develop high-yield rice cultivars in future breeding programs.

摘要

背景

水稻是最重要的作物之一,提高水稻产量对于满足未来全球粮食供应需求至关重要。编码细胞分裂素氧化酶/脱氢酶的Gn1a(OsCKX2)在调节水稻籽粒产量方面发挥着重要作用。

结果

在本研究中,我们分析了Gn1a的遗传变异,其通过控制水稻小穗数来影响籽粒产量。在175个栽培品种和21份野生稻种质中研究了Gn1a启动子、5'非翻译区(UTR)和编码序列(CDS)的等位变异。我们发现Gn1a在栽培品种中序列变异较少,但在野生稻中表现出显著的核苷酸多样性。基于GN1A的氨基酸差异,在栽培品种中总共鉴定出14个等位基因,命名为AP1至AP14。关联分析表明,不同等位基因之间的小穗数和籽粒产量存在显著差异。系统发育分析表明,栽培品种中的三个主要等位基因AP3、AP8和AP9可能起源于野生稻中的一个共同祖先等位基因AP1。

结论

在这些栽培品种的等位基因中,AP9被认为是籼稻中的最佳等位基因,因为它在过去高产水稻育种中表现出强烈的人工选择痕迹。在未来的育种计划中探索Gn1a的高产相关等位基因以培育高产水稻品种可能具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b72f/4681714/f951adbfa5d4/12284_2015_71_Fig1_HTML.jpg

相似文献

1
Artificial Selection of Gn1a Plays an Important role in Improving Rice Yields Across Different Ecological Regions.
Rice (N Y). 2015 Dec;8(1):37. doi: 10.1186/s12284-015-0071-4. Epub 2015 Dec 16.
3
Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance.
J Integr Plant Biol. 2022 Jan;64(1):23-38. doi: 10.1111/jipb.13185.
5
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3167-72. doi: 10.1073/pnas.1300359110. Epub 2013 Feb 4.
7
Pyramiding of , , and Exhibits Complementary and Additive Effects on Rice Yield.
Int J Mol Sci. 2022 Oct 18;23(20):12478. doi: 10.3390/ijms232012478.
8
Updating the elite rice variety Kongyu 131 by improving the Gn1a locus.
Rice (N Y). 2017 Dec;10(1):35. doi: 10.1186/s12284-017-0174-1. Epub 2017 Jul 20.

引用本文的文献

2
DNAL7, a new allele of NAL11, has major pleiotropic effects on rice architecture.
Planta. 2024 Mar 20;259(5):93. doi: 10.1007/s00425-024-04376-4.
3
Introducing Promotes Heading Date and Produces Semi-Draft Phenotype in Rice.
Int J Mol Sci. 2023 Jun 20;24(12):10365. doi: 10.3390/ijms241210365.
4
Cytokinin Oxygenase/Dehydrogenase Inhibitors: An Emerging Tool in Stress Biotechnology Employed for Crop Improvement.
Front Genet. 2022 Mar 24;13:877510. doi: 10.3389/fgene.2022.877510. eCollection 2022.
5
A cluster of Ankyrin and Ankyrin-TPR repeat genes is associated with panicle branching diversity in rice.
PLoS Genet. 2021 Jun 7;17(6):e1009594. doi: 10.1371/journal.pgen.1009594. eCollection 2021 Jun.
6
Marker-assisted selection for grain number and yield-related traits of rice ( L.).
Physiol Mol Biol Plants. 2020 May;26(5):885-898. doi: 10.1007/s12298-020-00773-7. Epub 2020 Mar 27.
8
The rice genome revolution: from an ancient grain to Green Super Rice.
Nat Rev Genet. 2018 Aug;19(8):505-517. doi: 10.1038/s41576-018-0024-z.
9
Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes.
Theor Appl Genet. 2018 Jun;131(6):1391-1403. doi: 10.1007/s00122-018-3085-7. Epub 2018 Mar 15.

本文引用的文献

3
PAY1 improves plant architecture and enhances grain yield in rice.
Plant J. 2015 Aug;83(3):528-36. doi: 10.1111/tpj.12905. Epub 2015 Jul 7.
4
OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice.
Plant J. 2013 Jan;73(2):190-200. doi: 10.1111/j.1365-313x.2012.05122.x. Epub 2012 Nov 12.
7
The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1.
Plant Cell Environ. 2015 Apr;38(4):638-54. doi: 10.1111/pce.12397. Epub 2014 Aug 6.
8
Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa).
New Phytol. 2014 Jan;201(1):91-103. doi: 10.1111/nph.12499. Epub 2013 Sep 23.
9
Identification and characterization of OsEBS, a gene involved in enhanced plant biomass and spikelet number in rice.
Plant Biotechnol J. 2013 Dec;11(9):1044-57. doi: 10.1111/pbi.12097. Epub 2013 Aug 7.
10
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3167-72. doi: 10.1073/pnas.1300359110. Epub 2013 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验