Suppr超能文献

水稻锌指蛋白 DST 通过调控 Gn1a/OsCKX2 的表达量来提高产量。

Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.

机构信息

State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3167-72. doi: 10.1073/pnas.1300359110. Epub 2013 Feb 4.

Abstract

The phytohormone cytokinin (CK) positively regulates the activity and function of the shoot apical meristem (SAM), which is a major parameter determining seed production. The rice (Oryza sativa L.) Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) gene, which encodes a cytokinin oxidase, has been identified as a major quantitative trait locus contributing to grain number improvement in rice breeding practice. However, the molecular mechanism of how the expression of OsCKX2 is regulated in planta remains elusive. Here, we report that the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) directly regulates OsCKX2 expression in the reproductive meristem. DST-directed expression of OsCKX2 regulates CK accumulation in the SAM and, therefore, controls the number of the reproductive organs. We identify that DST(reg1), a semidominant allele of the DST gene, perturbs DST-directed regulation of OsCKX2 expression and elevates CK levels in the reproductive SAM, leading to increased meristem activity, enhanced panicle branching, and a consequent increase of grain number. Importantly, the DST(reg1) allele provides an approach to pyramid the Gn1a-dependent and Gn1a-independent effects on grain production. Our study reveals that, as a unique regulator of reproductive meristem activity, DST may be explored to facilitate the genetic enhancement of grain production in rice and other small grain cereals.

摘要

植物激素细胞分裂素(CK)正向调节茎尖分生组织(SAM)的活性和功能,而 SAM 是决定种子产量的主要参数。水稻(Oryza sativa L.)Gn1a/OsCKX2(粒数 1a/细胞分裂素氧化酶 2)基因,编码细胞分裂素氧化酶,已被鉴定为水稻育种实践中提高粒数的主要数量性状位点。然而,OsCKX2 表达如何在植物体内受到调控的分子机制仍不清楚。在这里,我们报告锌指转录因子干旱和盐胁迫耐受(DST)直接调节生殖分生组织中 OsCKX2 的表达。DST 指导的 OsCKX2 表达调控 SAM 中的 CK 积累,从而控制生殖器官的数量。我们鉴定出 DST 基因的半显性等位基因 DST(reg1),扰乱了 DST 对 OsCKX2 表达的定向调控,并提高了生殖 SAM 中的 CK 水平,导致分生组织活性增强,穗分枝增加,从而增加了粒数。重要的是,DST(reg1)等位基因为利用 Gn1a 依赖和 Gn1a 不依赖对谷物产量的影响提供了一种方法。我们的研究揭示了 DST 作为生殖分生组织活性的独特调节剂,可能被探索用于促进水稻和其他小谷物中谷物产量的遗传改良。

相似文献

1
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3167-72. doi: 10.1073/pnas.1300359110. Epub 2013 Feb 4.
2
Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice.
J Integr Plant Biol. 2022 Apr;64(4):871-883. doi: 10.1111/jipb.13238. Epub 2022 Apr 5.
3
Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance.
J Integr Plant Biol. 2022 Jan;64(1):23-38. doi: 10.1111/jipb.13185.
4
FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism.
BMC Plant Biol. 2023 Dec 16;23(1):650. doi: 10.1186/s12870-023-04671-4.
7
Cytokinin oxidase regulates rice grain production.
Science. 2005 Jul 29;309(5735):741-5. doi: 10.1126/science.1113373. Epub 2005 Jun 23.
8
10
Artificial Selection of Gn1a Plays an Important role in Improving Rice Yields Across Different Ecological Regions.
Rice (N Y). 2015 Dec;8(1):37. doi: 10.1186/s12284-015-0071-4. Epub 2015 Dec 16.

引用本文的文献

1
Enhanced rice breeding with GLR1_CAPS marker for glabrous hull selection.
BMC Plant Biol. 2025 Aug 2;25(1):1017. doi: 10.1186/s12870-025-07113-5.
2
A Novel OsMPK6-OsMADS47-PPKL1/3 Module Controls Grain Shape and Yield in Rice.
Adv Sci (Weinh). 2025 Aug;12(30):e01946. doi: 10.1002/advs.202501946. Epub 2025 Jun 5.
3
Differential ABA sensitivity of superior and inferior rice grains is linked to cell cycle entry into endoreduplication.
Front Plant Sci. 2025 May 20;16:1585022. doi: 10.3389/fpls.2025.1585022. eCollection 2025.
4
Rice grain size: current regulatory mechanisms and future perspectives.
J Plant Res. 2025 May;138(3):403-417. doi: 10.1007/s10265-025-01626-8. Epub 2025 Mar 8.
5
6
FZP modulates tillering via OsMADS57 in rice.
Plant Biotechnol J. 2025 Apr;23(4):1202-1212. doi: 10.1111/pbi.14578. Epub 2025 Feb 10.
7
Surviving floods: Escape and quiescence strategies of rice coping with submergence.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiaf029.
8
Genomic regions associated with flag leaf and panicle architecture in rice (Oryza sativa L.).
BMC Genomics. 2024 Dec 18;25(1):1200. doi: 10.1186/s12864-024-11037-z.
10
Competitive binding of small antagonistic peptides to the OsER1 receptor optimizes rice panicle architecture.
Plant Commun. 2025 Mar 10;6(3):101204. doi: 10.1016/j.xplc.2024.101204. Epub 2024 Dec 6.

本文引用的文献

6
Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.
Nat Genet. 2010 Jun;42(6):541-4. doi: 10.1038/ng.591. Epub 2010 May 23.
7
OsSPL14 promotes panicle branching and higher grain productivity in rice.
Nat Genet. 2010 Jun;42(6):545-9. doi: 10.1038/ng.592. Epub 2010 May 23.
8
NINJA connects the co-repressor TOPLESS to jasmonate signalling.
Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验