Suppr超能文献

首发精神病性障碍中幻听的皮质形态个体化协方差概况。

Individualized covariance profile of cortical morphology for auditory hallucinations in first-episode psychosis.

作者信息

Yun Je-Yeon, Kim Sung Nyun, Lee Tae Young, Chon Myong-Wuk, Kwon Jun Soo

机构信息

Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.

SNU-MRC, Institute of Human Behavioral Medicine, Seoul, Republic of Korea.

出版信息

Hum Brain Mapp. 2016 Mar;37(3):1051-65. doi: 10.1002/hbm.23083. Epub 2015 Dec 17.

Abstract

Neocortical phenotype of cortical surface area (CSA) and thickness (CT) are influenced by distinctive genetic factors and undergo differential developmental trajectories, which could be captured using the individualized cortical structural covariance (ISC). Disturbed patterns of neocortical development and maturation underlie the perceptual disturbance of psychosis including auditory hallucination (AH). To demonstrate the utility of selected ISC features as primal biomarker of AH in first-episode psychosis (FEP) subjects experiencing AH (FEP-AH), we employed herein a support vector machine (SVM). A total of 147 subjects (FEP-AH, n = 27; FEP-NAH, n = 24; HC, n = 96) underwent T1 -weighted magnetic resonance imaging at 3T. The FreeSurfer software suite was used for cortical parcellation, with the CSA-ISC and CT-ISC then calculated. The most informative ISCs showing statistical significance (P < 0.001) across every run of leave-one-out group-comparison were aligned according to the absolute value of averaged t-statistics and were packaged into candidate feature sets for classification analysis using the SVM. An optimal feature set comprising three CSA-ISCs, including the intraparietal sulcus, Broca's complex, and the anterior insula, distinguished FEP-AH from FEP-NAH subjects with 83.6% accuracy (sensitivity = 82.8%; specificity = 85.7%). Furthermore, six CT-ISCs encompassing the executive control network and Wernicke's module classified FEP-AH from FEP-NAH subjects with 82.3% accuracy (sensitivity = 79.5%; specificity = 88.6%). Finally, extended sets of ISCs related to the default-mode network distinguished FEP-AH or FEP-NAH from HC subjects with 89.0-93.0% accuracy (sensitivity = 88.4-93.4%; specificity = 89.0-94.1%). This study established a distinctive intermediate phenotype of biological proneness for AH in FEP using CSA-ISCs as well as a state marker of disease progression using CT-ISCs.

摘要

新皮质表面积(CSA)和厚度(CT)的表型受独特的遗传因素影响,并经历不同的发育轨迹,这可以通过个体化皮质结构协方差(ISC)来捕捉。新皮质发育和成熟的紊乱模式是包括幻听(AH)在内的精神病感知障碍的基础。为了证明所选ISC特征作为首次发作精神病(FEP)患者中AH的原始生物标志物的效用,我们在此采用了支持向量机(SVM)。共有147名受试者(FEP-AH组,n = 27;FEP-无AH组,n = 24;健康对照组,n = 96)在3T条件下接受了T1加权磁共振成像。使用FreeSurfer软件套件进行皮质分区,然后计算CSA-ISC和CT-ISC。在每次留一法组间比较中显示出统计学显著性(P < 0.001)的最具信息性的ISC,根据平均t统计量的绝对值进行排列,并打包成候选特征集,用于使用SVM进行分类分析。一个由三个CSA-ISC组成的最佳特征集,包括顶内沟、布洛卡区和前岛叶,以83.6%的准确率区分FEP-AH组和FEP-无AH组受试者(敏感性 = 82.8%;特异性 = 85.7%)。此外,六个涵盖执行控制网络和韦尼克模块的CT-ISC以82.3%的准确率区分FEP-AH组和FEP-无AH组受试者(敏感性 = 79.5%;特异性 = 88.6%)。最后,与默认模式网络相关的扩展ISC集以89.0 - 93.0%的准确率区分FEP-AH组或FEP-无AH组与健康对照组受试者(敏感性 = 88.4 - 93.4%;特异性 = 89.0 - 94.1%)。本研究使用CSA-ISC建立了FEP中AH的独特生物学易感性中间表型,并使用CT-ISC建立了疾病进展的状态标志物。

相似文献

1
Individualized covariance profile of cortical morphology for auditory hallucinations in first-episode psychosis.
Hum Brain Mapp. 2016 Mar;37(3):1051-65. doi: 10.1002/hbm.23083. Epub 2015 Dec 17.
3
Neural Correlates of Response to Pharmacotherapy in Obsessive-Compulsive Disorder: Individualized Cortical Morphology-Based Structural Covariance.
Prog Neuropsychopharmacol Biol Psychiatry. 2015 Dec 3;63:126-33. doi: 10.1016/j.pnpbp.2015.06.009. Epub 2015 Jun 24.
4
Progressive loss of cortical gray matter in first episode psychosis patients with auditory hallucinations.
Schizophr Res. 2024 May;267:534-545. doi: 10.1016/j.schres.2023.11.011. Epub 2023 Dec 2.
5
Auditory hallucinations in first-episode psychosis: A voxel-based morphometry study.
Schizophr Res. 2019 Jul;209:148-155. doi: 10.1016/j.schres.2019.05.001. Epub 2019 May 18.
6
Cortical thinning and caudate abnormalities in first episode psychosis and their association with clinical outcome.
Schizophr Res. 2014 Oct;159(1):36-42. doi: 10.1016/j.schres.2014.07.030. Epub 2014 Aug 11.
8
Auditory Cortex Characteristics in Schizophrenia: Associations With Auditory Hallucinations.
Schizophr Bull. 2017 Jan;43(1):75-83. doi: 10.1093/schbul/sbw130. Epub 2016 Sep 7.
10
Altered default network resting state functional connectivity in patients with a first episode of psychosis.
Schizophr Res. 2012 Aug;139(1-3):13-8. doi: 10.1016/j.schres.2012.05.005. Epub 2012 May 26.

引用本文的文献

2
Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis.
Psychiatry Clin Neurosci. 2024 Dec;78(12):732-743. doi: 10.1111/pcn.13736. Epub 2024 Sep 18.
3
Altered individual gray matter structural covariance networks in early abstinence patients with alcohol dependence.
Brain Imaging Behav. 2024 Oct;18(5):951-960. doi: 10.1007/s11682-024-00888-5. Epub 2024 May 7.
4
Exploring Alzheimer's disease: a comprehensive brain connectome-based survey.
Psychoradiology. 2024 Jan 11;4:kkad033. doi: 10.1093/psyrad/kkad033. eCollection 2024.
5
Atypical characteristic changes of surface morphology and structural covariance network in developmental dyslexia.
Neurol Sci. 2024 May;45(5):2261-2270. doi: 10.1007/s10072-023-07193-x. Epub 2023 Nov 23.
6
A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis.
Mol Psychiatry. 2023 Aug;28(8):3278-3292. doi: 10.1038/s41380-023-02195-9. Epub 2023 Aug 10.
8
Structural covariance networks in schizophrenia: A systematic review Part II.
Schizophr Res. 2022 Jan;239:176-191. doi: 10.1016/j.schres.2021.11.036. Epub 2021 Dec 13.
9
Altered structural brain networks in linguistic variants of frontotemporal dementia.
Brain Imaging Behav. 2022 Jun;16(3):1113-1122. doi: 10.1007/s11682-021-00560-2. Epub 2021 Nov 10.
10
Brain Structural Covariance Networks in Behavioral Variant of Frontotemporal Dementia.
Brain Sci. 2021 Feb 4;11(2):192. doi: 10.3390/brainsci11020192.

本文引用的文献

1
Neural Correlates of Response to Pharmacotherapy in Obsessive-Compulsive Disorder: Individualized Cortical Morphology-Based Structural Covariance.
Prog Neuropsychopharmacol Biol Psychiatry. 2015 Dec 3;63:126-33. doi: 10.1016/j.pnpbp.2015.06.009. Epub 2015 Jun 24.
2
Multicenter mapping of structural network alterations in autism.
Hum Brain Mapp. 2015 Jun;36(6):2364-73. doi: 10.1002/hbm.22776. Epub 2015 Feb 25.
3
Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies.
Neuropsychopharmacology. 2015 Jun;40(7):1742-51. doi: 10.1038/npp.2015.22. Epub 2015 Jan 20.
4
Deviations in cortex sulcation associated with visual hallucinations in schizophrenia.
Mol Psychiatry. 2015 Sep;20(9):1101-7. doi: 10.1038/mp.2014.140. Epub 2014 Oct 28.
7
8
A longitudinal study of cortical changes and their cognitive correlates in patients followed up after first-episode psychosis.
Psychol Med. 2015 Jan;45(1):205-16. doi: 10.1017/S0033291714001433. Epub 2014 Jul 3.
9
Cortical thickness in individuals with non-clinical and clinical psychotic symptoms.
Brain. 2014 Oct;137(Pt 10):2664-9. doi: 10.1093/brain/awu167. Epub 2014 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验