Suppr超能文献

一项关于单模态与多模态神经影像学技术在精神分裂症分类中的比较的荟萃分析和系统评价。

A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis.

机构信息

Department of Psychology, Northwestern University, Evanston, IL, USA.

Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA.

出版信息

Mol Psychiatry. 2023 Aug;28(8):3278-3292. doi: 10.1038/s41380-023-02195-9. Epub 2023 Aug 10.

Abstract

BACKGROUND

Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder.

METHODS

A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction.

RESULTS

93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores.

CONCLUSIONS

The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.

摘要

背景

精神障碍的特征是大脑网络的结构和功能异常。神经影像学技术使用独特的特征(例如结构完整性、共激活)来绘制和描述这些异常。然而,目前尚不清楚特定的方法或多种方式结合是否特别有效,可以识别出患有精神障碍的人的大脑网络差异。

方法

系统的荟萃分析评估了使用各种神经影像学模式(即 T1 加权成像(T1)、弥散张量成像(DTI)、静息状态功能连接(rs-FC)或某种组合(多模态))对精神分裂症谱系障碍进行机器学习分类。纳入手稿的标准包括全脑分析和交叉验证,以提供关于精神病中大尺度脑系统预测能力的完整图片。在这项荟萃分析中,我们在 Ovid MEDLINE、PubMed、PsychInfo、Google Scholar 和 Web of Science 中搜索了从开始到 2023 年 3 月 13 日发表的文章。对于使用相同数据集的研究,我们对预测结果进行了平均处理,但也进行了平行分析,包括使用许多数据集汇总样本的研究。我们通过漏斗图不对称评估了偏倚。双变量回归模型确定了成像模式、人口统计学和预处理方法的差异是否调节了分类。对于具有内部预测(通过交叉验证)和外部预测的研究,分别运行了单独的模型。

结果

确定了 93 项用于定量综述的研究(30 项 T1、9 项 DTI、40 项 rs-FC 和 14 项多模态)。总的来说,所有模式都可靠地区分了精神分裂症谱系障碍患者和对照组(OR=2.64(95%CI=2.33 至 2.95))。然而,分类在各种模式之间相对相似:在独立内部数据的分类中,模式之间没有差异,在外部数据集中,rs-FC 研究相对于 T1 研究具有较小的优势。我们发现结果存在大量异质性,导致漏斗图和 Egger 检验存在显著的偏倚迹象。然而,当研究仅限于异质性较小的研究时,结果仍然相似,与结构测量相比,rs-FC 仍然具有较小的优势。值得注意的是,在所有情况下,多模态和单模态方法之间均未见显著差异,rs-FC 和单模态研究报告的分类性能大致重叠。人口统计学和分析或去噪方面的差异与分类评分的变化无关。

结论

本研究结果表明,神经影像学方法在精神病的分类中具有潜力。有趣的是,目前大多数模式在精神病的分类中表现相似,在某些特定情况下,rs-FC 相对于结构模式具有轻微优势。值得注意的是,研究结果差异很大,表明存在有偏差的效应大小,特别是强调需要更多使用外部预测和大样本量的研究。采用更严格和系统化的标准将为理解和治疗这一关键人群增加重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a007/10618094/67579b9617cb/41380_2023_2195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验