Department of Physics, Department of Chemistry, and JILA, University of Colorado , Boulder, Colorado 80309, United States.
German Research School for Simulation Sciences, RWTH Aachen University and Forschungszentrum Jülich , D-52425 Jülich, Germany.
Nano Lett. 2016 Jan 13;16(1):479-87. doi: 10.1021/acs.nanolett.5b04135. Epub 2015 Dec 28.
Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.
结构、动力学和涉及单分子的耦合决定了催化、电子或生物系统中的功能。虽然振动光谱提供了分子结构的深入了解,但即使在单分子光谱中,快速波动也会模糊分子轨迹,类似于在测量大集合时的空间平均。为了深入了解分子内耦合、底物耦合和动态过程,我们在可变和低温下使用尖端增强拉曼光谱(TERS)来减慢和控制单个分子的运动。我们解析了单个模式的固有线宽,允许对振动模式进行详细和定量的研究。从温度相关的线宽变窄和分裂,我们量化了超快振动退相、分子内耦合和构象异质性。通过对单个模式波动的统计相关分析,我们观察到分子的旋转运动和光谱波动。这项工作展示了超越化学识别的单分子振动光谱,为从飞秒到分钟的分子运动的全貌提供了可能性。