de Campos Ferreira Rodrigo Cezar, Sagwal Amandeep, Doležal Jiří, Canola Sofia, Merino Pablo, Neuman Tomáš, Švec Martin
Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic.
Faculty of Mathematics and Physics, Charles University; Ke Karlovu 3, Praha 2 CZ12116. Czech Republic.
ACS Nano. 2024 May 21;18(20):13164-13170. doi: 10.1021/acsnano.4c02105. Epub 2024 May 6.
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state. We reveal a correlation between the appearance of a Kondo resonance in differential conductance spectroscopy and concurrent characteristic changes captured by the TERS measurements. Through a detailed investigation of various adsorbed and tip-contacted PTCDA scenarios, we infer that the Raman scattering on suspended PTCDA is resonant with a higher excited state. Theoretical simulation of the vibrational spectra enables a precise assignment of the individual TERS peaks to high-symmetry A modes, including the fingerprints of the observed spin state. These findings highlight the potential of TERS in capturing complex interactions between charge, spin, and photophysical properties in nanoscale molecular systems and suggest a pathway for designing single-molecule spin-optical devices.
在超高真空和低温条件下的针尖增强拉曼光谱(TERS)能够探索单个分子的吸附几何结构、电子态和振动指纹之间的关系。TERS在开壳层分子构型中反映自旋态的能力尚未得到探索。在这里,我们使用扫描探针显微镜的针尖将苝-3,4,9,10-四羧酸二酐(PTCDA)分子从金属表面提起,使其进入开壳层自旋1/2阴离子态。我们揭示了微分电导光谱中近藤共振的出现与TERS测量所捕获的同时发生的特征变化之间的相关性。通过对各种吸附和针尖接触的PTCDA情况的详细研究,我们推断悬浮PTCDA上的拉曼散射与更高的激发态共振。振动光谱的理论模拟能够将各个TERS峰精确地归属为高对称A模式,包括所观察到的自旋态的指纹。这些发现突出了TERS在捕捉纳米级分子系统中电荷、自旋和光物理性质之间复杂相互作用方面的潜力,并为设计单分子自旋光学器件提供了一条途径。