Suppr超能文献

单分子表面增强拉曼光谱。

Single-Molecule Surface-Enhanced Raman Spectroscopy.

机构信息

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science & Engineering, Zhejiang University, Hangzhou 310027, China.

Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.

出版信息

Sensors (Basel). 2022 Jun 29;22(13):4889. doi: 10.3390/s22134889.

Abstract

Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.

摘要

单分子表面增强拉曼光谱(SM-SERS)具有非侵入式、无需标记和高通量检测单分子的潜力。SM-SERS 可以在不进行统计平均的情况下检测单分子的化学信息,在化学分析、纳电子学、生物化学传感等领域有广泛的应用。最近,SM-SERS 在科学和应用方面取得了一系列前所未有的进展,引起了各个领域的兴趣。在这篇综述中,我们首先阐明了 SM-SERS 的关键概念,包括增强因子(EF)、光谱波动和单分子事件的实验证据。接下来,我们系统地讨论了 SM-SERS 的高级实现,包括具有超高 EF 和可重复性的衬底、提高分子定域在热点概率的策略,以及非金属和混合衬底。然后,提出了 SM-SERS 的几个应用实例,包括催化、纳电子学和传感。最后,我们总结了 SM-SERS 的挑战和未来。我们希望这篇文献综述能激发更多领域研究人员的兴趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba4/9269420/e1905940210f/sensors-22-04889-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验