Suppr超能文献

用于疫苗开发的丙型肝炎病毒线性B细胞表位预测

Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development.

作者信息

Huang Wen-Lin, Tsai Ming-Ju, Hsu Kai-Ti, Wang Jyun-Rong, Chen Yi-Hsiung, Ho Shinn-Ying

出版信息

BMC Med Genomics. 2015;8 Suppl 4(Suppl 4):S3. doi: 10.1186/1755-8794-8-S4-S3. Epub 2015 Dec 9.

Abstract

BACKGROUND

High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV.

RESULTS

This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV.

CONCLUSIONS

This work proposes an interpretable rule mining system IRMS-BE for extracting interpretable rules using informative physicochemical properties and a web server Bcell-HCV for predicting linear B-cell epitopes of HCV. IRMS-BE may also apply to predict B-cell epitopes for other viruses, which benefits the improvement of vaccines development of these viruses without significant modification. Bcell-HCV is useful for identifying B-cell epitopes of HCV antigen to help vaccine development, which is available at http://e045.life.nctu.edu.tw/BcellHCV.

摘要

背景

丙型肝炎病毒(HCV)高度的基因异质性是开发有效疫苗的主要挑战。现有的HCV疫苗研发研究主要集中在T细胞免疫反应上。然而,鉴定能够刺激B细胞反应的线性B细胞表位是基于肽的疫苗研发的主要任务之一。由于B细胞表位长度的变异性,B细胞表位的预测比T细胞表位的预测要复杂得多。此外,不同病原体中线性B细胞表位的基序差异很大(例如HCV和乙型肝炎病毒)。为应对这一挑战,本研究旨在提出一种基于HCV定制序列的预测方法来鉴定HCV B细胞表位。

结果

本研究建立了一个经过实验验证的数据集,该数据集包含来自免疫表位数据库的由774个线性B细胞表位和774个非B细胞表位组成的HCV数据集的B细胞反应。提出了一种B细胞表位的可解释规则挖掘系统(IRMS-BE),以选择信息丰富的物理化学性质(PCP),然后提取若干基于if-then规则的知识来鉴定B细胞表位。使用具有34个信息丰富的PCP的支持向量机(SVM)实现了一个网络服务器Bcell-HCV,其训练准确率达到79.7%,测试准确率达到70.7%,优于基于SVM的HCV B细胞表位鉴定方法和两种通用方法。本研究对34个信息丰富的性质进行了深入分析,结果表明最有效的性质是表位的α-螺旋结构,它影响宿主细胞与HCV E2蛋白之间的连接。此外,从前五个PCP中获得了12条可解释规则,灵敏度达到75.6%,特异性达到71.3%。最后鉴定出一个保守的、有前景的疫苗候选物PDREMVLYQE,可纳入HCV疫苗。

结论

本研究提出了一种可解释规则挖掘系统IRMS-BE,用于利用信息丰富的物理化学性质提取可解释规则,以及一个网络服务器Bcell-HCV,用于预测HCV的线性B细胞表位。IRMS-BE也可应用于预测其他病毒的B细胞表位,这有利于在无需重大修改的情况下改进这些病毒的疫苗研发。Bcell-HCV有助于鉴定HCV抗原的B细胞表位以辅助疫苗研发,可通过http://e045.life.nctu.edu.tw/BcellHCV获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8432/4682406/fe070a142467/1755-8794-8-S4-S3-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验