Jatana Nidhi, Thukral Lipi, Latha N
Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110 021, India.
CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India.
J Mol Model. 2016 Jan;22(1):14. doi: 10.1007/s00894-015-2868-x. Epub 2015 Dec 17.
Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.
人类多巴胺受体D4(DRD4)协调多种神经功能,是许多心理障碍的治疗靶点。在此,我们研究了DRD4中的两个罕见变体:V194G和R237L,它们分别引起功能改变,导致配体结合和G蛋白偶联的破坏。使用原子分子动力学(MD)模拟,我们进行了深入分析,以揭示野生型和突变体复合物与其结合的激动剂和拮抗剂配体的结构特征。我们构建了蛋白质内部网络图谱,以区分由突变引起的全局构象变化。模拟还使我们能够阐明配体结合突变受体中局部侧链的动态变化。数据表明,跨膜区V中的突变(V194G)极大地破坏了配体结合位点的组织,并导致天然螺旋排列紊乱。有趣的是,R237L突变导致细胞内环3(突变位点)侧链接触的显著重新连接,并且还影响远处的跨膜拓扑结构。此外,与野生型相比,这些突变导致ICL3区域紧凑,表明该受体无法进行G蛋白偶联。因此,我们的研究结果揭示了突变的DRD4受体未报道的结构决定因素,并为设计有效的新型药物提供了一个强大的框架。