Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
Acta Biomater. 2016 Mar 1;32:120-128. doi: 10.1016/j.actbio.2015.12.023. Epub 2015 Dec 12.
Diabetes is one of the most formidable diseases facing the world today, with the number of patients growing every year. Poor glycemic control yields a host of complications, such as impaired wound healing. This often results in the formation of diabetic foot ulcers, which carry a poor prognosis because they are notoriously difficult to treat. Current therapies do not address the increased number of infiltrating macrophages to the wound bed that overproduce tumor necrosis factor α (TNFα), which increases fibroblast apoptosis and collagen dismantling and decreases angiogenesis. In this study, we investigated the potential of RNA interference therapy to reduce the inappropriately high levels of TNFα in the wound bed. Although TNFα is a challenging gene silencing target, our lipidoid nanoparticles potently silence TNFα mRNA and protein expression at siRNA doses of 5-100nM without inducing vehicle-related gene silencing or cell death. We also describe the creation of an in vitro macrophage-fibroblast co-culture model, which reflects the TNFα and monocyte chemotactant protein-1 (MCP-1/CCL2) cross-talk that exists in diabetic wounds. Because TNFα induces fibroblasts to produce MCP-1, we show that silencing TNFα results in a downregulation of MCP-1, which should inhibit the recruitment of additional macrophages to the wound. In co-culture experiments, a single lipidoid nanoparticle dose of 100nM siTNFα downregulated TNFα and MCP-1 by 64% and 32%, respectively. These data underscore the potential of lipidoid nanoparticle RNAi treatment to inhibit a positive feedback cycle that fuels the pathogenesis of diabetic foot ulcers.
Diabetic foot ulcers are a rapidly growing issue worldwide, with current ulcer treatments not as effective as desired. RNA interference therapy represents a largely untapped possible solution to impaired wound healing. We show that siRNA-loaded lipidoid nanoparticles silence the overexpression of tumor necrosis factor α (TNFα) in inflammatory macrophages which leads to a subsequent downregulation of fibroblast-produced macrophage chemotactant protein-1 (MCP-1). Both TNFα and MCP-1 are critical components of the inflammatory feedback loop that exists in chronic wounds. In contrast to the majority of wound drug delivery studies, our study utilizes macrophage/fibroblast co-culture experiments to recapitulate a multicellular wound environment in which cytokine signaling influences inflammation. Results underscore the therapeutic potential of siRNA nanoparticles directed against TNFα in inhibiting two key inflammatory targets in chronic wounds.
糖尿病是当今世界面临的最严峻的疾病之一,患者人数每年都在增加。血糖控制不佳会导致多种并发症,如伤口愈合受损。这通常会导致糖尿病足溃疡的形成,由于其治疗难度大,预后不良。目前的治疗方法并不能解决浸润到伤口床的巨噬细胞数量增加的问题,这些巨噬细胞过度产生肿瘤坏死因子 α(TNFα),增加成纤维细胞凋亡和胶原分解,减少血管生成。在这项研究中,我们研究了 RNA 干扰疗法降低伤口床中 TNFα 水平的潜力。尽管 TNFα 是一个具有挑战性的基因沉默靶点,但我们的脂质纳米粒在 5-100nM 的 siRNA 剂量下能够有效地沉默 TNFα mRNA 和蛋白表达,而不会引起载体相关基因沉默或细胞死亡。我们还描述了一种体外巨噬细胞-成纤维细胞共培养模型的创建,该模型反映了糖尿病伤口中存在的 TNFα 和单核细胞趋化蛋白 1(MCP-1/CCL2)的串扰。由于 TNFα 诱导成纤维细胞产生 MCP-1,我们表明沉默 TNFα 会导致 MCP-1 的下调,这应该抑制更多巨噬细胞向伤口的募集。在共培养实验中,脂质纳米粒的单次剂量为 100nM siTNFα 可使 TNFα 和 MCP-1 分别下调 64%和 32%。这些数据强调了脂质纳米粒 RNAi 治疗抑制促进糖尿病足溃疡发病机制的正反馈循环的潜力。
糖尿病足溃疡是一个在全球范围内迅速增长的问题,目前的溃疡治疗效果并不理想。RNA 干扰疗法代表了一种尚未充分开发的潜在解决方案,可以改善伤口愈合。我们表明,负载 siRNA 的脂质纳米粒可沉默炎症性巨噬细胞中肿瘤坏死因子 α(TNFα)的过度表达,进而导致成纤维细胞产生的巨噬细胞趋化蛋白 1(MCP-1)下调。TNFα 和 MCP-1 都是慢性伤口中炎症反馈环的关键组成部分。与大多数伤口药物输送研究不同,我们的研究利用巨噬细胞/成纤维细胞共培养实验来模拟细胞伤口环境,其中细胞因子信号影响炎症。结果强调了针对 TNFα 的 siRNA 纳米粒在抑制慢性伤口中两个关键炎症靶点方面的治疗潜力。