Suppr超能文献

对欧盟委员会提出的用于评估废物危险特性HP 14“生态毒性”的四种计算方法的评估。

Assessment of four calculation methods proposed by the EC for waste hazardous property HP 14 'Ecotoxic'.

作者信息

Hennebert Pierre, Humez Nicolas, Conche Isabelle, Bishop Ian, Rebischung Flore

机构信息

INERIS (National Institute for Industrial Environment and Risks), BP 2, F-60550 Verneuil-en-Halatte, France.

SYPRED (Syndicat Professionnel pour le Recyclage et l'Elimination des Déchets Dangereux), France(1).

出版信息

Waste Manag. 2016 Feb;48:24-33. doi: 10.1016/j.wasman.2015.11.044. Epub 2015 Dec 11.

Abstract

Legislation published in December 2014 revised both the List of Waste (LoW) and amended Appendix III of the revised Waste Framework Directive 2008/98/EC; the latter redefined hazardous properties HP 1 to HP 13 and HP 15 but left the assessment of HP 14 unchanged to allow time for the Directorate General of the Environment of the European Commission to complete a study that is examining the impacts of four different calculation methods for the assessment of HP 14. This paper is a contribution to the assessment of the four calculation methods. It also includes the results of a fifth calculation method; referred to as "Method 2 with extended M-factors". Two sets of data were utilised in the assessment; the first (Data Set #1) comprised analytical data for 32 different waste streams (16 hazardous (H), 9 non-hazardous (NH) and 7 mirror entries, as classified by the LoW) while the second data set (Data Set #2), supplied by the eco industries, comprised analytical data for 88 waste streams, all classified as hazardous (H) by the LoW. Two approaches were used to assess the five calculation methods. The first approach assessed the relative ranking of the five calculation methods by the frequency of their classification of waste streams as H. The relative ranking of the five methods (from most severe to less severe) is: Method 3>Method 1>Method 2 with extended M-factors>Method 2>Method 4. This reflects the arithmetic ranking of the concentration limits of each method when assuming M=10, and is independent of the waste streams, or the H/NH/Mirror status of the waste streams. A second approach is the absolute matching or concordance with the LoW. The LoW is taken as a reference method and the H wastes are all supposed to be HP 14. This point is discussed in the paper. The concordance for one calculation method is established by the number of wastes with identical classification by the considered calculation method and the LoW (i.e. H to H, NH to NH). The discordance is established as well, that is when the waste is classified "H" in the LoW and "NH" by calculation (i.e. an under-estimation of the hazard). For Data Set #1, Method 2 with extended M-factors matches best with the LoW (80% concordant H and non-H by LoW, and 13% discordant for H waste by LoW). This method more correctly classifies wastes containing substances with high ecotoxicity. Methods 1 and 3 have nearly as good matches (76% and 72% concordant H and non-H by LoW, and 13% and 6% respectively discordant for H waste by LoW). Method 2 with extended M-factors, but limited to the M-factors published in the CLP has insufficient concordance (64% concordant H and non-H by LoW, and 50% discordant for H waste by LoW). As the same method with extended M-factors gives the best performance, the lower performance is due to the limited set of M-factors in the CLP. Method 4 is divergent (60% concordant H and non-H by LoW, and 56% discordant for H waste by LoW). For Data Set #2, Methods 2 and 4 do not correctly classify 24 air pollution control residues from incineration 19 01 07(∗) (3/24 and 2/24 respectively), and should not be used, while Methods 3, 1 and 2 with extended M-factors successfully classify 100% of them as hazardous. From the two sets of data, Method 2 with extended M-factors (corresponding more closely to the CLP methods used for products) matches best with the LoW when the LoW code is safely known, and Method 3 and 1 will deviate from the LoW if the samples contain substances with high ecotoxicity (in particular PAHs). Methods 2 and 4 are not recommended. Formally, this conclusion depends on the waste streams that are used for the comparison of methods and the relevancy of the classification as hazardous for ecotoxicity in the LoW. Since the set is large (120 waste streams) and no selection has been made here in the available data, the conclusion should be robust.

摘要

2014年12月发布的立法对《废物清单》(LoW)进行了修订,并对修订后的《废物框架指令》2008/98/EC的附录III进行了修正;后者重新定义了危险特性HP 1至HP 13和HP 15,但对HP 14的评估保持不变,以便欧盟委员会环境总局有时间完成一项研究,该研究正在考察评估HP 14的四种不同计算方法的影响。本文有助于对这四种计算方法进行评估。它还包括第五种计算方法的结果;称为“扩展M因子的方法2”。评估中使用了两组数据;第一组(数据集#1)包括32种不同废物流的分析数据(16种危险废物(H)、9种非危险废物(NH)和7种镜像条目,按照《废物清单》分类),而第二组数据集(数据集#2)由生态产业提供,包括88种废物流的分析数据,所有这些废物流按照《废物清单》均分类为危险废物(H)。采用两种方法评估这五种计算方法。第一种方法通过将废物流分类为H的频率来评估五种计算方法的相对排名。五种方法的相对排名(从最严格到较宽松)为:方法3>方法1>扩展M因子的方法2>方法2>方法4。这反映了假设M = 10时每种方法浓度限值的算术排名,并且与废物流或废物流的H/NH/镜像状态无关。第二种方法是与《废物清单》的绝对匹配或一致性。将《废物清单》作为参考方法,并且所有H废物都假定为HP 14。本文对此点进行了讨论。一种计算方法的一致性通过该计算方法与《废物清单》分类相同的废物数量来确定(即H对H,NH对NH)。不一致性也同样确定,即当废物在《废物清单》中分类为“H”而通过计算分类为“NH”时(即对危害的低估)。对于数据集#1,扩展M因子的方法2与《废物清单》匹配最佳(《废物清单》中80%的H和非H一致,《废物清单》中H废物有13%不一致)。该方法能更正确地对含有高生态毒性物质的废物进行分类。方法1和3的匹配度几乎同样好(《废物清单》中76%和72%的H和非H一致,《废物清单》中H废物分别有13%和6%不一致)。扩展M因子但限于《全球化学品统一分类和标签制度》(CLP)中公布的M因子的方法2一致性不足(《废物清单》中64%的H和非H一致,《废物清单》中H废物有50%不一致)。由于相同的扩展M因子方法表现最佳,较低的性能是由于CLP中M因子的有限集合。方法4差异较大(《废物清单》中60%的H和非H一致,《废物清单》中H废物有56%不一致)。对于数据集#2,方法2和4不能正确分类来自焚烧19 01 07(∗)的24种空气污染控制残留物(分别为3/24和2/24),不应使用,而扩展M因子的方法3、1和2成功将它们100%分类为危险废物。从这两组数据来看,扩展M因子的方法2(更紧密对应于用于产品的CLP方法)在安全知晓《废物清单》代码时与《废物清单》匹配最佳,如果样品含有高生态毒性物质(特别是多环芳烃),方法3和1将偏离《废物清单》。不推荐方法2和4。正式地,该结论取决于用于方法比较的废物流以及《废物清单》中危险分类对生态毒性的相关性。由于集合很大(120种废物流)且在此处可用数据中未进行选择,该结论应该是可靠的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验