Ogilvie Lesley A, Wierling Christoph, Kessler Thomas, Lehrach Hans, Lange Bodo M H
Alacris Theranostics GmbH, Berlin, Germany.
Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
Cancer Inform. 2015 Dec 6;14(Suppl 4):95-103. doi: 10.4137/CIN.S1933. eCollection 2015.
Despite a growing body of knowledge on the mechanisms underlying the onset and progression of cancer, treatment success rates in oncology are at best modest. Current approaches use statistical methods that fail to embrace the inherent and expansive complexity of the tumor/patient/drug interaction. Computational modeling, in particular mechanistic modeling, has the power to resolve this complexity. Using fundamental knowledge on the interactions occurring between the components of a complex biological system, large-scale models with predictive capabilities can be generated. Here, we describe how mechanistic virtual patient models, based on systematic molecular characterization of patients and their diseases, have the potential to shift the theranostic paradigm for oncology, both in the fields of personalized medicine and targeted drug development. In particular, we highlight the mechanistic modeling platform ModCell™ for individualized prediction of patient responses to treatment, emphasizing modeling techniques and avenues of application.
尽管关于癌症发生和发展的潜在机制的知识越来越多,但肿瘤学的治疗成功率充其量只能说是一般。目前的方法使用的统计方法未能涵盖肿瘤/患者/药物相互作用中固有的广泛复杂性。计算建模,特别是机制建模,有能力解决这种复杂性。利用复杂生物系统各组成部分之间相互作用的基础知识,可以生成具有预测能力的大规模模型。在这里,我们描述了基于患者及其疾病的系统分子特征的机制虚拟患者模型如何有可能在个性化医学和靶向药物开发领域改变肿瘤学的治疗诊断模式。特别是,我们重点介绍了用于个性化预测患者治疗反应的机制建模平台ModCell™,强调了建模技术和应用途径。