Suppr超能文献

模型的模型:癌症治疗与药物研发的转化途径。

Models of Models: A Translational Route for Cancer Treatment and Drug Development.

作者信息

Ogilvie Lesley A, Kovachev Aleksandra, Wierling Christoph, Lange Bodo M H, Lehrach Hans

机构信息

Alacris Theranostics GmbH, Berlin, Germany.

Max Planck Institute for Molecular Genetics, Berlin, Germany.

出版信息

Front Oncol. 2017 Sep 19;7:219. doi: 10.3389/fonc.2017.00219. eCollection 2017.

Abstract

Every patient and every disease is different. Each patient therefore requires a personalized treatment approach. For technical reasons, a personalized approach is feasible for treatment strategies such as surgery, but not for drug-based therapy or drug development. The development of individual mechanistic models of the disease process in every patient offers the possibility of attaining truly personalized drug-based therapy and prevention. The concept of virtual clinical trials and the integrated use of , and models in preclinical development could lead to significant gains in efficiency and order of magnitude increases in the cost effectiveness of drug development and approval. We have developed mechanistic computational models of large-scale cellular signal transduction networks for prediction of drug effects and functional responses, based on patient-specific multi-level omics profiles. However, a major barrier to the use of such models in a clinical and developmental context is the reliability of predictions. Here we detail how the approach of using "models of models" has the potential to impact cancer treatment and drug development. We describe the iterative refinement process that leverages the flexibility of experimental systems to generate highly dimensional data, which can be used to train and validate computational model parameters and improve model predictions. In this way, highly optimized computational models with robust predictive capacity can be generated. Such models open up a number of opportunities for cancer drug treatment and development, from enhancing the design of experimental studies, reducing costs, and improving animal welfare, to increasing the translational value of results generated.

摘要

每个患者和每种疾病都是不同的。因此,每个患者都需要个性化的治疗方法。由于技术原因,个性化方法对于手术等治疗策略是可行的,但对于基于药物的治疗或药物开发则不可行。为每个患者建立疾病过程的个体机制模型,为实现真正个性化的药物治疗和预防提供了可能性。虚拟临床试验的概念以及在临床前开发中综合使用各种模型,可能会显著提高效率,并使药物开发和审批的成本效益提高几个数量级。我们基于患者特异性的多层次组学图谱,开发了大规模细胞信号转导网络的机制计算模型,用于预测药物效应和功能反应。然而,在临床和开发背景下使用此类模型的一个主要障碍是预测的可靠性。在此,我们详细介绍使用“模型的模型”方法如何有可能影响癌症治疗和药物开发。我们描述了迭代优化过程,该过程利用实验系统的灵活性来生成高维数据,可用于训练和验证计算模型参数并改善模型预测。通过这种方式,可以生成具有强大预测能力的高度优化的计算模型。此类模型为癌症药物治疗和开发带来了许多机会,从加强实验研究设计、降低成本、改善动物福利到提高所产生结果的转化价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验