Lewis Daniel M, Abaci Hasan E, Xu Yu, Gerecht Sharon
Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
Biofabrication. 2015 Dec 22;7(4):045010. doi: 10.1088/1758-5090/7/4/045010.
During vessel injury, endothelial progenitors cells (EPCs) are recruited from bone marrow and directed to the hypoxic injury site. The hypoxic conditions in the damaged blood vessel promote TNF-α, which upregulates intercellular adhesion molecule-1 (ICAM-1). EPCs attach to endothelial cell lining using ICAM-1. Here we aimed to examine EPC attachment to ECs in an injured-blood vessel conditions. We first determined ICAM-1 expression in stimulated HUVECs. We stimulated HUVECs with 21% oxygen (atmospheric), atmospheric with TNF-α-supplemented media, 1% oxygen (hypoxia), and hypoxia with TNF-α-supplemented media and found the highest ECFC attachment on HUVECs stimulated with TNF-α and hypoxia, correlating with the highest ICAM-1 expression. We next designed, fabricated and tested a three-dimensional microbioreactor (3D MBR) system with precise control and monitoring of dissolve oxygen and media flow rate in the cellular environment. We utilized a step-wise seeding approach, producing monolayer of HUVECs on all four walls. When stimulated with both TNF-α and hypoxia, ECFC retention on HUVECs was significantly increased under low shear stress compared to static controls. Overall, the 3D MBR system mimics the pathological oxygen tension and shear stress in the damaged vasculature, providing a platform to model vascular-related disorders.
在血管损伤期间,内皮祖细胞(EPCs)从骨髓中募集并被导向缺氧损伤部位。受损血管中的缺氧条件会促进肿瘤坏死因子-α(TNF-α)的产生,TNF-α会上调细胞间黏附分子-1(ICAM-1)。EPCs利用ICAM-1附着在内皮细胞衬里上。在这里,我们旨在研究在损伤血管条件下EPCs与内皮细胞(ECs)的附着情况。我们首先测定了在受到刺激的人脐静脉内皮细胞(HUVECs)中ICAM-1的表达。我们用21%氧气(大气环境)、添加TNF-α的大气环境培养基、1%氧气(缺氧环境)以及添加TNF-α的缺氧环境培养基刺激HUVECs,发现用TNF-α和缺氧刺激的HUVECs上内皮祖细胞集落形成细胞(ECFC)的附着量最高,这与最高的ICAM-1表达相关。接下来,我们设计、制造并测试了一种三维微生物反应器(3D MBR)系统,该系统能够精确控制和监测细胞环境中的溶解氧和培养基流速。我们采用逐步接种方法,在所有四面壁上形成HUVECs的单层。当同时用TNF-α和缺氧刺激时,与静态对照相比,在低剪切应力下,HUVECs上的ECFC保留率显著增加。总体而言,3D MBR系统模拟了受损脉管系统中的病理氧张力和剪切应力,为模拟血管相关疾病提供了一个平台。