Yanagimachi Tsuyoshi, Fujita Yukihiro, Takeda Yasutaka, Honjo Jun, Atageldiyeva Kuralay K, Takiyama Yumi, Abiko Atsuko, Makino Yuichi, Kieffer Timothy J, Haneda Masakazu
Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
Diabetologia. 2016 Mar;59(3):533-41. doi: 10.1007/s00125-015-3842-y. Epub 2015 Dec 22.
AIMS/HYPOTHESIS: Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone released from gut K cells. While the predominant form is GIP(1-42), a shorter form, GIP(1-30), is produced by pancreatic alpha cells and promotes insulin secretion in a paracrine manner. Here, we elucidated whether GIP(1-30) expression is modulated in mouse models of diabetes. We then investigated whether PEGylated GIP(1-30) can improve islet function and morphology as well as suppress the progression to hyperglycaemia in mice treated with low-dose streptozotocin (LD-STZ).
We examined pancreatic GIP immunoreactivity in rodent diabetic models. We synthesised [D-Ala(2)]GIP(1-30) and modified the C-terminus with polyethylene glycol (PEG) to produce a dipeptidyl peptidase-4 (DPP-4)-resistant long-acting GIP analogue, [D-Ala(2)]GIP(1-30)-PEG. We performed i.p.GTT and immunohistochemical analysis in non-diabetic and LD-STZ diabetic mice, with or without administration of [D-Ala(2)]GIP(1-30)-PEG.
Pancreatic GIP expression was concomitantly enhanced with alpha cell expansion in rodent models of diabetes. Treatment with DPP-4 inhibitor decreased both the GIP- and glucagon-positive areas and preserved the insulin-positive area in LD-STZ diabetic mice. Body weight was not affected by [D-Ala(2)]GIP(1-30)-PEG in LD-STZ or non-diabetic mice. Treatment with GIP significantly ameliorated chronic hyperglycaemia and improved glucose excursions in LD-STZ mice. Treatment with GIP also reduced alpha cell expansion in the islets and suppressed plasma glucagon levels compared with non-treated LD-STZ mice. Additionally, [D-Ala(2)]GIP(1-30)-PEG preserved beta cell area via inhibition of apoptosis in LD-STZ mice.
CONCLUSIONS/INTERPRETATION: Our data suggest that GIP(1-30) expression is upregulated in diabetes, and PEGylated GIP(1-30) can suppress the progression to STZ-induced hyperglycaemia by inhibiting beta cell apoptosis and alpha cell expansion.
目的/假设:葡萄糖依赖性促胰岛素多肽(GIP)是一种从肠道K细胞释放的肽类激素。虽然其主要形式是GIP(1 - 42),但较短的形式GIP(1 - 30)由胰腺α细胞产生,并以旁分泌方式促进胰岛素分泌。在此,我们阐明了在糖尿病小鼠模型中GIP(1 - 30)的表达是否受到调节。然后,我们研究了聚乙二醇化的GIP(1 - 30)是否能改善低剂量链脲佐菌素(LD - STZ)处理的小鼠的胰岛功能和形态,以及抑制其向高血糖的进展。
我们检测了啮齿动物糖尿病模型中胰腺GIP的免疫反应性。我们合成了[D - Ala(2)]GIP(1 - 30),并用聚乙二醇(PEG)修饰其C末端,以产生一种抗二肽基肽酶 - 4(DPP - )的长效GIP类似物,即[D - Ala(2)]GIP(1 - 30) - PEG。我们在非糖尿病和LD - STZ糖尿病小鼠中进行了腹腔内葡萄糖耐量试验(i.p.GTT)和免疫组织化学分析,这些小鼠接受或未接受[D - Ala(2)]GIP(1 - 30) - PEG处理。
在啮齿动物糖尿病模型中,胰腺GIP表达随着α细胞的扩增而同时增强。在LD - STZ糖尿病小鼠中,用DPP - 抑制剂处理可减少GIP和胰高血糖素阳性区域,并保留胰岛素阳性区域。在LD - STZ或非糖尿病小鼠中,[D - Ala(2)]GIP(1 - 30) - PEG对体重没有影响。用GIP处理可显著改善LD - STZ小鼠的慢性高血糖,并改善血糖波动。与未处理的LD - STZ小鼠相比,用GIP处理还可减少胰岛中α细胞的扩增,并抑制血浆胰高血糖素水平。此外,[D - Ala(2)]GIP(1 - 30) - PEG通过抑制LD - STZ小鼠的细胞凋亡来保留β细胞面积。
结论/解读:我们的数据表明,在糖尿病中GIP(1 - 30)表达上调,聚乙二醇化的GIP(1 - 30)可通过抑制β细胞凋亡和α细胞扩增来抑制向STZ诱导的高血糖的进展。