Wang Jigang, Zhang Chong-Jing, Chia Wan Ni, Loh Cheryl C Y, Li Zhengjun, Lee Yew Mun, He Yingke, Yuan Li-Xia, Lim Teck Kwang, Liu Min, Liew Chin Xia, Lee Yan Quan, Zhang Jianbin, Lu Nianci, Lim Chwee Teck, Hua Zi-Chun, Liu Bin, Shen Han-Ming, Tan Kevin S W, Lin Qingsong
Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China.
Nat Commun. 2015 Dec 22;6:10111. doi: 10.1038/ncomms10111.
The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing.
青蒿素及其衍生物是最有效的抗疟药物,但其作用机制尚未完全明确。在此,我们开展了一项无偏向性的化学蛋白质组学分析,以直接探究恶性疟原虫中的这一机制。我们使用一种炔烃标记的青蒿素类似物与生物素相结合,来鉴定124个青蒿素共价结合蛋白靶点,其中许多靶点都参与了疟原虫的基本生物学过程。如此广泛的靶向谱会破坏疟原虫的生化环境并导致其死亡。此外,我们使用炔烃标记的青蒿素与荧光染料相结合来监测蛋白结合情况,结果表明,血红素而非游离亚铁离子,是青蒿素激活的主要原因。血红素主要来源于疟原虫早期环状体阶段的血红素生物合成途径以及后期阶段的血红蛋白消化过程。我们的研究结果支持了一个统一模型,用以解释青蒿素在杀灭疟原虫中的作用及特异性。