Suppr超能文献

化学蛋白质组学方法利用基于青蒿素的活性探针揭示了青蒿素在……中的直接靶点和血红素依赖性激活机制。 (原文中“in using an artemisinin-based activity probe”部分表述似乎不完整,整体译文可能因这部分内容缺失背景信息而略有不通顺,但根据现有内容只能这样翻译。)

Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in using an artemisinin-based activity probe.

作者信息

Wang Jigang, Lin Qingsong

机构信息

The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China. ; Department of Biological Sciences, National University of Singapore, 117543, Singapore.

Department of Biological Sciences, National University of Singapore, 117543, Singapore.

出版信息

Microb Cell. 2016 Apr 5;3(5):230-231. doi: 10.15698/mic2016.05.503.

Abstract

Artemisinin and its analogues are currently the most effective anti-malarial drugs. The activation of artemisinin requires the cleavage of the endoperoxide bridge in the presence of iron sources. Once activated, artemisinins attack macromolecules through alkylation and propagate a series of damages, leading to parasite death. Even though several parasite proteins have been reported as artemisinin targets, the exact mechanism of action (MOA) of artemisinin is still controversial and its high potency and specificity against the malaria parasite could not be fully accounted for. Recently, we have developed an unbiased chemical proteomics approach to directly probe the MOA of artemisinin in . We synthesized an artemisinin analogue with an alkyne tag, which can be coupled with biotin through click chemistry. This enabled selective purification and identification of 124 protein targets of artemisinin. Many of these targets are critical for the parasite survival. assays confirmed the specific artemisinin binding and inhibition of selected targets. We thus postulated that artemisinin kills the parasite through disrupting its biochemical landscape. In addition, we showed that artemisinin activation requires heme, rather than free ferrous iron, by monitoring the extent of protein binding using a fluorescent dye coupled with the alkyne-tagged artemisinin. The extremely high level of heme released from the hemoglobin digestion by the parasite makes artemisinin exceptionally potent against late-stage parasites (trophozoite and schizont stages) compared to parasites at early ring stage, which have low level of heme, mainly derived from endogenous synthesis. Such a unique activation mechanism also confers artemisinin with extremely high specificity against the parasites, while the healthy red blood cells are unaffected. Our results provide a sound explanation of the MOA of artemisinin and its specificity against malaria parasites, which may benefit the optimization of treatment strategies and the battle against the emerging drug resistance.

摘要

青蒿素及其类似物是目前最有效的抗疟药物。青蒿素的激活需要在铁源存在的情况下使内过氧化物桥断裂。一旦被激活,青蒿素通过烷基化攻击大分子并引发一系列损伤,导致寄生虫死亡。尽管已有几种寄生虫蛋白被报道为青蒿素的作用靶点,但青蒿素的确切作用机制仍存在争议,其对疟原虫的高效性和特异性也无法得到充分解释。最近,我们开发了一种无偏向性的化学蛋白质组学方法来直接探究青蒿素在[具体情境未给出]中的作用机制。我们合成了一种带有炔烃标签的青蒿素类似物,它可以通过点击化学与生物素偶联。这使得能够选择性地纯化和鉴定124个青蒿素的蛋白靶点。其中许多靶点对寄生虫的存活至关重要。[具体实验名称未给出]实验证实了青蒿素与选定靶点的特异性结合及抑制作用。因此,我们推测青蒿素通过破坏寄生虫的生化环境来杀死寄生虫。此外,通过使用与炔烃标记的青蒿素偶联的荧光染料监测蛋白结合程度,我们发现青蒿素的激活需要血红素,而非游离的亚铁离子。寄生虫消化血红蛋白释放出的极高水平的血红素,使得青蒿素对晚期寄生虫(滋养体和裂殖体阶段)的效力比对早期环状体阶段的寄生虫高得多,早期环状体阶段的寄生虫血红素水平较低,主要来源于内源性合成。这种独特的激活机制也赋予了青蒿素对寄生虫极高的特异性,而健康的红细胞不受影响。我们的结果为青蒿素的作用机制及其对疟原虫的特异性提供了合理的解释,这可能有助于优化治疗策略以及对抗新出现的耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40be/5349152/a7878a471395/mic-03-230-g01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验