Suppr超能文献

日本手术部位感染预测统计模型的开发:迈向基于统计模型的标准化感染率

The Development of Statistical Models for Predicting Surgical Site Infections in Japan: Toward a Statistical Model-Based Standardized Infection Ratio.

作者信息

Fukuda Haruhisa, Kuroki Manabu

机构信息

1Kyushu University Graduate School of Medical Sciences,Fukuoka,Japan.

2Institute of Statistical Mathematics,Tachikawa,Tokyo,Japan.

出版信息

Infect Control Hosp Epidemiol. 2016 Mar;37(3):260-71. doi: 10.1017/ice.2015.302. Epub 2015 Dec 23.

Abstract

OBJECTIVE

To develop and internally validate a surgical site infection (SSI) prediction model for Japan.

DESIGN

Retrospective observational cohort study.

METHODS

We analyzed surveillance data submitted to the Japan Nosocomial Infections Surveillance system for patients who had undergone target surgical procedures from January 1, 2010, through December 31, 2012. Logistic regression analyses were used to develop statistical models for predicting SSIs. An SSI prediction model was constructed for each of the procedure categories by statistically selecting the appropriate risk factors from among the collected surveillance data and determining their optimal categorization. Standard bootstrapping techniques were applied to assess potential overfitting. The C-index was used to compare the predictive performances of the new statistical models with those of models based on conventional risk index variables.

RESULTS

The study sample comprised 349,987 cases from 428 participant hospitals throughout Japan, and the overall SSI incidence was 7.0%. The C-indices of the new statistical models were significantly higher than those of the conventional risk index models in 21 (67.7%) of the 31 procedure categories (P<.05). No significant overfitting was detected.

CONCLUSIONS

Japan-specific SSI prediction models were shown to generally have higher accuracy than conventional risk index models. These new models may have applications in assessing hospital performance and identifying high-risk patients in specific procedure categories.

摘要

目的

开发并在内部验证一个适用于日本的手术部位感染(SSI)预测模型。

设计

回顾性观察队列研究。

方法

我们分析了2010年1月1日至2012年12月31日期间接受目标外科手术的患者提交给日本医院感染监测系统的监测数据。采用逻辑回归分析来开发预测SSI的统计模型。通过从收集的监测数据中统计选择合适的风险因素并确定其最佳分类,为每个手术类别构建一个SSI预测模型。应用标准自举技术评估潜在的过度拟合。使用C指数比较新统计模型与基于传统风险指数变量的模型的预测性能。

结果

研究样本包括来自日本全国428家参与医院的349,987例病例,总体SSI发生率为7.0%。在31个手术类别中的21个(67.7%)中,新统计模型的C指数显著高于传统风险指数模型(P<0.05)。未检测到明显的过度拟合。

结论

特定于日本的SSI预测模型总体上显示出比传统风险指数模型更高的准确性。这些新模型可能在评估医院绩效和识别特定手术类别中的高危患者方面有应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验