Suppr超能文献

电解质溶液中的涨落增强电导率。

Fluctuation-enhanced electric conductivity in electrolyte solutions.

机构信息

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94703.

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94703;

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10829-10833. doi: 10.1073/pnas.1714464114. Epub 2017 Sep 26.

Abstract

We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

摘要

我们分析了外电场对二元电解质流体热涨落的影响。结果表明,带电多组分扩散的涨落泊松-纳斯特-普朗克(PNP)方程与涨落流体动量方程相结合,导致电荷输运增强,其机制与伴随巨涨落的质量输运增强机制不同。尽管质量和电荷输运是通过热速度涨落的平流来实现的,但可以宏观上表示为电扩散,具有修正后的电导率和非零阳离子-阴离子扩散系数。具体而言,我们预测非零阳离子-阴离子麦克斯韦-斯蒂芬系数与盐浓度的平方根成正比,这一预测与实验测量结果定量一致。修正后的或有效宏观方程与起始 PNP 方程不同,即使对于相当稀的二元电解质,它们也不含交叉扩散项。同时,对于无限稀的溶液,修正后的电导率和修正后的扩散系数是一致的,并且恢复了具有修正系数的经典 PNP 方程,证明了涨落流体力学方程的自洽性。我们的计算表明,涨落流体力学方法恢复了德拜-休克尔-昂萨格理论得到的电泳和弛豫修正,同时阐明了这些修正的物理起源,并直接推广到更复杂的多组分电解质。最后,我们表明强外电场导致各向异性增强的“巨大”速度涨落和盐浓度涨落减小。

相似文献

1
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10829-10833. doi: 10.1073/pnas.1714464114. Epub 2017 Sep 26.
2
Fluctuating hydrodynamics of reactive liquid mixtures.
J Chem Phys. 2018 Aug 28;149(8):084113. doi: 10.1063/1.5043428.
4
Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):013307. doi: 10.1103/PhysRevE.90.013307. Epub 2014 Jul 21.
5
How is charge transport different in ionic liquids and electrolyte solutions?
J Phys Chem B. 2011 Nov 17;115(45):13212-21. doi: 10.1021/jp204182c. Epub 2011 Oct 24.
6
Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments.
Phys Rev E. 2017 Nov;96(5-1):052133. doi: 10.1103/PhysRevE.96.052133. Epub 2017 Nov 22.
7
Diffusioosmotic flows in slit nanochannels.
J Colloid Interface Sci. 2007 Nov 15;315(2):721-30. doi: 10.1016/j.jcis.2007.06.075. Epub 2007 Aug 24.
8
Nonlinear electrochemical relaxation around conductors.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011501. doi: 10.1103/PhysRevE.74.011501. Epub 2006 Jul 6.
9
Fluctuating hydrodynamics of multispecies nonreactive mixtures.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013017. doi: 10.1103/PhysRevE.89.013017. Epub 2014 Jan 22.

引用本文的文献

1
Organic Semiconductor Nanotubes for Electrochemical Devices.
Adv Funct Mater. 2021 Dec 2;31(49). doi: 10.1002/adfm.202105358. Epub 2021 Jul 30.
2
Diffusiophoresis of charged colloidal particles in the limit of very high salinity.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18257-18262. doi: 10.1073/pnas.1701391115. Epub 2018 Jun 13.

本文引用的文献

2
Lattice Boltzmann scheme for electrolytes by an extended Maxwell-Stefan approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):053310. doi: 10.1103/PhysRevE.89.053310. Epub 2014 May 19.
3
Diffusive transport by thermal velocity fluctuations.
Phys Rev Lett. 2011 May 20;106(20):204501. doi: 10.1103/PhysRevLett.106.204501. Epub 2011 May 16.
4
Microfluidic chips for clinical and forensic analysis.
Electrophoresis. 2002 Mar;23(5):677-712. doi: 10.1002/1522-2683(200203)23:5<677::AID-ELPS677>3.0.CO;2-8.
5
Diffusive mass transfer by nonequilibrium fluctuations: Fick's law revisited.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jan;63(1 Pt 1):012105. doi: 10.1103/PhysRevE.63.012105. Epub 2000 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验