Haase Georg, Rabouille Catherine
Centre National de la Recherche Scientifique and Aix-Marseille Université UMR 7289, Institut de Neurosciences de la Timone Marseille, France.
The Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht Utrecht, Netherlands.
Front Neurosci. 2015 Dec 8;9:448. doi: 10.3389/fnins.2015.00448. eCollection 2015.
Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses.
高尔基体的病理改变,如碎片化,是许多神经退行性疾病的早期临床前特征,并且已经在运动神经元疾病肌萎缩侧索硬化症(ALS)中得到广泛研究。然而,其潜在的分子机制仍然不明。原则上,高尔基体碎片化可能源于三大类蛋白质的缺陷:高尔基体结构蛋白、细胞骨架蛋白和分子马达,以及介导运输至高尔基体和通过高尔基体的蛋白质。在这里,我们阐述了与超氧化物歧化酶1(SOD1)、TARDBP(TDP - 43)、VAPB和C9Orf72突变相关的ALS动物和细胞模型中高尔基体碎片化可能的不同机制,并基于进行性运动神经元病(pmn)小鼠的研究结果提出了一种新机制。这些小鼠在编码顺式高尔基体定位的微管结合辅助因子E(TBCE)的基因中发生突变,TBCE是协助微管蛋白折叠和微管聚合的五种伴侣蛋白之一。TBCE的缺失导致高尔基体微管的改变,进而阻碍高尔基体结构的维持。这是由于COPI衣被成分的下调、高尔基体系链的分散以及内质网 - 高尔基体SNARE蛋白的强烈积累。通过将TBCE募集到高尔基体,GTP酶ARF1可部分挽救这些效应。我们推测,COPI囊泡、微管及其相互作用的缺陷也可能是与其他突变相关的人类ALS、脊髓性肌萎缩症(SMA)及相关运动神经元疾病中高尔基体碎片化的基础。我们还讨论了病理性高尔基体改变的功能相关性,特别是它们在运动神经元细胞体、轴突和突触退化中可能的致病、促成或补偿作用。