Srivastava Avinash C, Chen Fang, Ray Tui, Pattathil Sivakumar, Peña Maria J, Avci Utku, Li Hongjia, Huhman David V, Backe Jason, Urbanowicz Breeanna, Miller Jeffrey S, Bedair Mohamed, Wyman Charles E, Sumner Lloyd W, York William S, Hahn Michael G, Dixon Richard A, Blancaflor Elison B, Tang Yuhong
Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA ; BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA.
BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA ; Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA.
Biotechnol Biofuels. 2015 Dec 21;8:224. doi: 10.1186/s13068-015-0403-z. eCollection 2015.
One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes. Given the link between the C1 and phenylpropanoid pathways, we evaluated whether folylpolyglutamate synthetase (FPGS), an enzyme that catalyzes the addition of a glutamate tail to folates to form folylpolyglutamates, can be a viable target for reducing cell wall recalcitrance in plants.
Consistent with its role in lignocellulosic formation, FPGS1 was preferentially expressed in vascular tissues. Total lignin was low in fpgs1 plants leading to higher saccharification efficiency of the mutant. The decrease in total lignin in fpgs1 was mainly due to lower guaiacyl (G) lignin levels. Glycome profiling revealed subtle alterations in the cell walls of fpgs1. Further analyses of hemicellulosic polysaccharides by NMR showed that the degree of methylation of 4-O-methyl glucuronoxylan was reduced in the fpgs1 mutant. Microarray analysis and real-time qRT-PCR revealed that transcripts of a number of genes in the C1 and lignin pathways had altered expression in fpgs1 mutants. Consistent with the transcript changes of C1-related genes, a significant reduction in S-adenosyl-l-methionine content was detected in the fpgs1 mutant. The modified expression of the various methyltransferases and lignin-related genes indicate possible feedback regulation of C1 pathway-mediated lignin biosynthesis.
Our observations provide genetic and biochemical support for the importance of folylpolyglutamates in the lignocellulosic pathway and reinforces previous observations that targeting a single FPGS isoform for down-regulation leads to reduced lignin in plants. Because fpgs1 mutants had no dramatic defects in above ground biomass, selective down-regulation of individual components of C1 metabolism is an approach that should be explored further for the improvement of lignocellulosic feedstocks.
一碳(C1)代谢对于合成一系列对生命至关重要的生物重要化合物具有重要意义。在植物中,C1途径对于包括木质素在内的大量次生代谢产物的合成至关重要。四氢叶酸及其衍生物统称为叶酸,是C1代谢途径酶的关键辅助因子。鉴于C1途径与苯丙烷途径之间的联系,我们评估了催化向叶酸添加谷氨酸尾巴以形成聚谷氨酸叶酸的酶——聚谷氨酸叶酸合成酶(FPGS)是否可以作为降低植物细胞壁顽固性的可行靶点。
与FPGS1在木质纤维素形成中的作用一致,它在维管组织中优先表达。fpgs1植物中的总木质素含量较低,导致突变体的糖化效率更高。fpgs1中总木质素的减少主要是由于愈创木基(G)木质素水平较低。糖组分析揭示了fpgs1细胞壁中的细微变化。通过核磁共振对半纤维素多糖的进一步分析表明,fpgs1突变体中4-O-甲基葡萄糖醛酸木聚糖的甲基化程度降低。微阵列分析和实时定量逆转录-聚合酶链反应表明,C1途径和木质素途径中许多基因的转录本在fpgs1突变体中的表达发生了改变。与C1相关基因的转录本变化一致,在fpgs1突变体中检测到S-腺苷-L-甲硫氨酸含量显著降低。各种甲基转移酶和木质素相关基因的表达改变表明C1途径介导的木质素生物合成可能存在反馈调节。
我们的观察结果为聚谷氨酸叶酸在木质纤维素途径中的重要性提供了遗传和生化支持,并强化了先前的观察结果,即靶向单个FPGS异构体进行下调会导致植物中木质素减少。由于fpgs1突变体在地上生物量方面没有明显缺陷,因此选择性下调C1代谢的各个组成部分是一种应进一步探索以改善木质纤维素原料的方法。