Suppr超能文献

沉默柳枝稷(Panicum virgatum L.)中的()可提高木质纤维素生物燃料产量。

Silencing () in Switchgrass ( L.) Improves Lignocellulosic Biofuel Production.

作者信息

Mazarei Mitra, Baxter Holly L, Srivastava Avinash, Li Guifen, Xie Hongli, Dumitrache Alexandru, Rodriguez Miguel, Natzke Jace M, Zhang Ji-Yi, Turner Geoffrey B, Sykes Robert W, Davis Mark F, Udvardi Michael K, Wang Zeng-Yu, Davison Brian H, Blancaflor Elison B, Tang Yuhong, Stewart Charles Neal

机构信息

Department of Plant Sciences, The University of Tennessee, Knoxville, TN, United States.

BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States.

出版信息

Front Plant Sci. 2020 Jun 19;11:843. doi: 10.3389/fpls.2020.00843. eCollection 2020.

Abstract

Switchgrass ( L.) is a lignocellulosic perennial grass with great potential in bioenergy field. Lignocellulosic bioenergy crops are mostly resistant to cell wall deconstruction, and therefore yield suboptimal levels of biofuel. The one-carbon pathway (also known as C1 metabolism) is critical for polymer methylation, including that of lignin and hemicelluloses in cell walls. Folylpolyglutamate synthetase (FPGS) catalyzes a biochemical reaction that leads to the formation of folylpolyglutamate, an important cofactor for many enzymes in the C1 pathway. In this study, the putatively novel switchgrass gene was identified and its functional role in cell wall composition and biofuel production was examined by RNAi knockdown analysis. The -downregulated plants were analyzed in the field over three growing seasons. Transgenic plants with the highest reduction in expression grew slower and produced lower end-of-season biomass. Transgenic plants with low-to-moderate reduction in transcript levels produced equivalent biomass as controls. There were no significant differences observed for lignin content and syringyl/guaiacyl lignin monomer ratio in the low-to-moderately reduced transgenic lines compared with the controls. Similarly, sugar release efficiency was also not significantly different in these transgenic lines compared with the control lines. However, transgenic plants produced up to 18% more ethanol while maintaining congruent growth and biomass as non-transgenic controls. Severity of rust disease among transgenic and control lines were not different during the time course of the field experiments. Altogether, the unchanged lignin content and composition in the low-to-moderate -downregulated lines may suggest that partial downregulation of expression did not impact lignin biosynthesis in switchgrass. In conclusion, the manipulation of expression in bioenergy crops may be useful to increase biofuel potential with no growth penalty or increased susceptibility to rust in feedstock.

摘要

柳枝稷(Panicum virgatum L.)是一种木质纤维素多年生草本植物,在生物能源领域具有巨大潜力。木质纤维素生物能源作物大多对细胞壁解构具有抗性,因此生物燃料产量不理想。一碳途径(也称为C1代谢)对于聚合物甲基化至关重要,包括细胞壁中木质素和半纤维素的甲基化。叶酰聚谷氨酸合成酶(FPGS)催化一种生化反应,导致叶酰聚谷氨酸的形成,叶酰聚谷氨酸是C1途径中许多酶的重要辅助因子。在本研究中,鉴定了假定的新柳枝稷基因,并通过RNAi敲低分析研究了其在细胞壁组成和生物燃料生产中的功能作用。在三个生长季节的田间对下调的植株进行了分析。表达量降低最多的转基因植株生长较慢,季末生物量较低。转录水平低至中度降低的转基因植株产生的生物量与对照相当。与对照相比,低至中度降低的转基因株系中木质素含量和紫丁香基/愈创木基木质素单体比率没有显著差异。同样,这些转基因株系与对照株系相比,糖释放效率也没有显著差异。然而,转基因植株在保持与非转基因对照一致的生长和生物量的同时,乙醇产量提高了18%。在田间试验过程中,转基因株系和对照株系之间的锈病严重程度没有差异。总之,低至中度下调株系中木质素含量和组成未发生变化,这可能表明表达的部分下调不会影响柳枝稷中木质素的生物合成。总之,在生物能源作物中操纵表达可能有助于提高生物燃料潜力,而不会对生长造成不利影响或增加原料对锈病的易感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d80/7317012/a960213d0f3f/fpls-11-00843-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验